
Global Constraints
in

Software Testing Applications

Arnaud Gotlieb

Simula Research Laboratory
Norway

1/34

Software Validation and
Verification

Hosted by SIMULA

Established and
awarded SFI in Oct. 2011

duration: 8 years

The Certus Centre

www.certus-sfi.no

Cisco Systems Norway

ABB Robotics
Stavanger

Kongsberg Maritime

Norwegian Custom and excise

http://www.certus-sfi.no/

Agenda

I. Software Testing

II. Optimal Test Suite Reduction

III. Automatic Test Case Generation

IV. Conclusions and Perspectives

Software Testing

Informal
World

Logical and
Mathematical
World

Real World

Software
Under Test Results

Constraint
Model

Verdict: Pass or Fail

Oracle

Test cases

ExigencesUser Requirements

Spec / Model

Software Testing

Software test preparation is a cognitively complex task:

- Requires to understand both model and code to create interesting test cases ;
- Program’s input space is usually very large (sometimes unbounded) ;
- Complex software (e.g., implementing ODEs or PDEs) yields to complex bugs ;
- Test oracles are hard to define (non-testable programs) ;

Not easily amenable to automation:

- Automatic test data generation is undecideable in the general case!
- Exploring the input space yields to combinatorial explosion ;
- Fully automated oracles are usually not available ;

How software testing differs from other
program verification techniques?

 Static analysis finds simple faults (division-by-zero, overflows, …) at
compile-time, while software testing finds functional faults at run-time
(P returns 3 while 2 was expected)

 Program proving aims at formally proving mathematical invariants, while
software testing evaluates the program in its execution environment

 Model-checking explores paths of a model of the software under test for
checking temporal properties or finding counter-examples, while software
testing is based on program executions

 Automatic test case generation

Find test cases to exercise specific behaviors, to execute specific code locations, to
cover some test objectives (e.g., all-statements, all-k-paths)

 Test suite reduction, test suite prioritization, test execution scheduling

 Robustness and performence testing

 Testing complex code (e.g., floating-point and iterative computations)

Some Hot Research Topics in Software Testing

Our thesis: Global constraints can efficiently tackle these problems!
(High-level primitives with specialised filtering algorithms)

Optimal Test Suite Reduction

Optimal TSR: the core problem

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Optimal TSR: find a minimal subset of TC such that each F is covered at least once
(Practical importance but NP-hard problem!) – An instance of Minimum Set Cover

Optimal TSR

The nvalue global constraint

nvalue(n, v)
Where:

n is an FD_variable

v = (v1, …, vk) is a vector of FD_variables

n = 𝑐𝑎𝑟𝑑(𝑣𝑖 𝑖 𝑖𝑛 1. . 𝑘)nvalue(n, v) holds iff

Introduced in [Pachet and Roy’99], first filtering algorithm in [Beldiceanu’01]
Solution existence for nvalue is NP-hard [Bessiere et al. ‘04]

Optimal TSR
F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
nvalue(MaxNvalue, (F1, F2, F3)),
label(minimize(MaxNvalue))

/* branch-and-bound search among feasible solutions */

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Optimal TSR: CP model with nvalue (1)

The global_cardinality constraint

gcc(t, d, v)
Where

t = (t1, …, tN) is a vector of N variables, each tj in Minj .. Maxj

d = (d1, …., dk) is a vector of k values

v = (v1, …, vk) is a vector of k variables, each vi in Mini..Maxi

∀𝑖 𝑖𝑛 1. . 𝑘,
𝑣𝑖 = 𝑐𝑎𝑟𝑑(𝑡𝑗 = 𝑑𝑖 𝑗 𝑖𝑛 1. . 𝑁)

gcc(t, d, v) holds iff

Filtering algorithms for gcc are based on max flow computations in
a network flow [Regin AAAI’96]

Example

gcc((F1, F2, F3), (1,2,3,4,5,6), (V1,V2,V3,V4,V5,V6))
means that:

In a solution of TSR
TC1 covers exactly V1 requirements in (F1, F2, F3)
TC2 ‘’ V2 ‘’
TC3 ‘’ V3 ‘’
...

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Here, for example, V1 = 1, V2 = 2, V3 = 1, V4 = 0, V5 = 0, V6 = 0 is a feasible solution

Where F1, F2, F3, V1, V2, V3, ... denote finite-domain variables

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
V1 in {0, 1}, V2 in {0, 2}, V3 in {0, 1}, V4 in {0, 1}, V5 in {0, 1}, V6 in {0, 1}

But, not an optimal one!

Optimal TSR

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
gcc((F1, F2, F3), (1,2,3,4,5,6), (V1, V2, V3, V4, V5, V6)),
gcc((V1, V2, V3, V4, V5, V6), (0-_), (Max0Req-_)),
label(maximize(Max0Req))

/* search heuristics by enumerating the Vi first */

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Optimal TSR: CP model with two gcc (2)
[Gotlieb Marijan ISSTA’2014]

Introducing model pre-treatment

F1 in {1, 2, 6}  F1 = 2 as cov(TC1) = cov(TC6)  cov(TC2)
withdraw TC1 and TC6

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

F3 is covered  withdraw TC5

F2 in {3,4}  e.g., F2 = 3, withdraw TC4

Three such pre-treatment rules have been identified and can be
included to simplify the problem

But, they are currently statically applied!

Optimal TSR

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
gcc((F1, F2, F3), (1,2,3,4,5,6), (V1, V2, V3, V4, V5, V6)),
nvalue(MaxNvalue, (V1, V2, V3, V4, V5, V6)),
label(minimize(MaxNvalue))

/* + pre-treatment + labelling heuristics based on max */

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

3. Optimal TSR: CP model Mixt (3)

Model comparison on random instances
(Reduced Test Suite percentage in 30sec of search)

Model comparison on random instances
(CPU time to find a global optimum)

Comparison with other approaches
(Reduced Test Suite percentage in 60 sec)

Optimized
(reduced/
prioritized)
test suite

TITAN [Marijan et al. SPLC’13, SPLC’14]

Unoptimized
test suite

Diagnostic views, feature coverage

Variability model to
describe a software
product line

Industrial case
studies: ABB, Cisco

Automatic Test Case Generation

f(int i, …)

{

a. j = 100;

while(i > 1)

b. { j++ ; i-- ;}

…

d. if(j > 500)

e. …
d

b

a

f

t

t

f

An example problem

…

value of i to reach e ?

e

Undecideable problem!

f(int i, …)

{

a. j = 100;

while(i > 1)

b. { j++ ; i-- ;}

…

d. if(j > 500)

e. …

d

b

a

f

t

t

f

Path-oriented exploration

…

1. Path selection

e.g., (a-b)14-…-d-e

2. Path condition generation (via symbolic exec.)

j1=100, i1>1, j2=j1+1, i2=i1-1, i2>1,…, j15>500

3. Path condition solving
unsatisfiable  FAIL

Backtrack !

e

f(int i, …)

{

a. j = 100;

while(i > 1)

b. { j++ ; i-- ;}

…

d. if(j > 500)

e. …

d

b

a

f

t

t

f

Constraint-based program exploration
(Gotlieb et al. ISSTA’98)

…

1. Program (under Static Single Assignment form) as constraints

2. Control dependencies generation;

j1=100, i3 ≤ 1, j3 > 500

3. Global constraint reasoning

j1  j3 entailed unroll the loop 400 times  i1 in 401 .. 231-1

No backtrack !

e

Program as constraints

 Type declaration: signed long x;  x in -231..231-1

 Assignments: i*=++i ;  i2 = (i1+1)2

 Memory and array accesses and updates (Charreteur et al. JSS’09, Bardin et al. CPAIOR’12):

v=A[i] (or p=Mem[&p])  variations of element/3

 Control structures: dedicated global constraints

Conditionnals (SSA) if D then C1; else C2  ite/6

Loops (SSA) while D do C  w/5

Conditional as a global constraint: ite/6

ite(x > 0, j1, j2, j3, j1 = 5, j2 = 18) iff

if(x > 0)

3

2

0

j2 = 18;

= …. j3 …

 (x > 0  j1 = 5  j3 = j1)  (x > 0)  j2 = 18  j3 = j2

 ((x > 0)  j3 = j2)  x > 0  j1 = 5  j3 = j1

 Join(x > 0  j1 = 5  j3 = j1 , (x > 0)  j1 = 18  j3 = j2)

 x > 0  j1 = 5  j3 = j1

 (x > 0)  j2 = 18  j3 = j2

j1 = 5; 1

Implemented as a global constraint: interface, awakening conditions, filtering algo.

While loop as a global constraint: w/5

v3 = (v1 , v2)
while(Dec)

body

w(Dec, V1, V2, V3, body) iff

 DecV3V1  bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)
 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1)  DecV3V1  v3=v1

 (DecV3V1  v3=v1)  DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew) , DecV3V1  v3=v1)

f(int i) {

j = 100;

while(i > 1)

{ j++ ; i-- ;}

…

if(j > 500)

…

w(i3 > 1, (i,j1), (i2,j2), (i3,j3), j2 = j3 + 1  i2 = i3 - 1)

i = 23, j1=100 ?

i3 = 1, j3 = 122

no

i3 = 10 ?

i in 401..231-1

j1 = 100,

j3 > 500 ?

w(Dec, V1, V2, V3, body) :-

 DecV3V1  bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)

 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1)  DecV3V1  v3=v1

 (DecV3V1  v3=v1) 

DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew ,

DecV3V1  v3=v1)

Features of the w/5 relation

 It can be imbricated with other relations (e.g., nested loops w(cond1,
v1,v2,v3, w(cond2, ...)) – It handles unbounded loops

 Managed by the solver as any other constraint (its consistency is iteratively
checked, awakening conditions, success/failure/suspension)

 By construction, w is unfolded only when necessary but w may NOT
terminate ! (only a semi-correct procedure)

 Join is implemented using Abstract Interpretation operators (interval union,
Q-polyhedra weak-join operator, simple widening operators)

(Gotlieb et al. CL’2000, Denmat et al. CP’2006)

EUCLIDE: Automatic Test Case Generation for
C Programs [Gotlieb ICST’09, KER’12]

Conclusions

• Global constraints (existing ones or user-defined) can efficiently and effectively
tackle difficult software testing problems – experimental results and industrial case
studies

• So far, only a few subset of existing global constraints have been explored for that
purpose (e.g., nvalue, gcc, element, all_different,…)

• Some software testing problems require the creation of dedicated global
constraints to facilitate disjunctive reasoning, case-based reasoning or probabilistic
reasoning

 there is room for research in that area!

Perspectives

 More industrial case studies for demonstrating the potential of global
constraints for software testing applications

 Using GCC WITH COSTS to deal with bi-objective optimisation in test suite
reduction (e.g., to also select test cases based on execution time in addition to
reauirement coverage)

 Test Case Execution Scheduling with CUMULATIVE

Thanks to my co-authors:

Bernard Botella (CEA)
Mats Carlsson (SICS)
Tristan Denmat (Inria)
MariusLiaeen (CISCO)
Dusica Marijan (SIMULA)
Alexandre Pétillon (SIMULA)

