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Software Testing

Software test preparation is a cognitively complex task:

- Requires to understand both model and code to create interesting test cases ;
- Program’s input space is usually very large (sometimes unbounded) ;
- Complex software (e.g., implementing ODEs or PDEs) yields to complex bugs ; 
- Test oracles are hard to define (non-testable programs)  ; 

Not easily amenable to automation:

- Automatic test data generation is undecideable in the general case!
- Exploring the input space yields to combinatorial explosion ;
- Fully automated oracles are usually not available ;



How software testing differs from other
program verification techniques?

 Static analysis finds simple faults (division-by-zero, overflows, …) at 
compile-time, while software testing finds functional faults at run-time
(P returns 3 while 2 was expected)

 Program proving aims at formally proving mathematical invariants, while
software testing evaluates the program in its execution environment

 Model-checking explores paths of a model of the software under test for 
checking temporal properties or finding counter-examples, while software 
testing is based on program executions



 Automatic test case generation

Find test cases to exercise specific behaviors, to execute specific code locations, to 
cover some test objectives (e.g., all-statements, all-k-paths)

 Test suite reduction, test suite prioritization, test execution scheduling

 Robustness and performence testing

 Testing complex code (e.g., floating-point and iterative computations)

Some Hot Research Topics in Software Testing

Our thesis: Global constraints can efficiently tackle these problems!
(High-level primitives with specialised filtering algorithms)



Optimal Test Suite Reduction



Optimal TSR: the core problem
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Optimal TSR: find a minimal subset of TC such that each F is covered at least once
(Practical importance but NP-hard problem!) – An instance of Minimum Set Cover

Optimal TSR



The nvalue global constraint

nvalue( n, v)
Where:

n is an FD_variable

v = (v1, …,   vk)  is a vector of FD_variables

n = 𝑐𝑎𝑟𝑑( 𝑣𝑖 𝑖 𝑖𝑛 1. . 𝑘)nvalue(n, v)   holds iff

Introduced in  [Pachet and Roy’99], first filtering algorithm in [Beldiceanu’01] 
Solution existence for nvalue is NP-hard [Bessiere et al. ‘04]



Optimal TSR
F1 in {1, 2, 6},  F2 in {3, 4},  F3 in {2, 5}
nvalue( MaxNvalue, (F1, F2, F3) ),     
label(minimize(MaxNvalue))        

/* branch-and-bound search among feasible solutions  */
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Optimal TSR: CP model with nvalue (1)



The global_cardinality constraint

gcc( t, d, v)
Where

t =  (t1, …,   tN)  is a vector of N variables, each tj in Minj .. Maxj

d = (d1, …., dk)  is a vector of k values

v = (v1, …,   vk)  is a vector of k variables, each vi in Mini..Maxi

∀𝑖 𝑖𝑛 1. . 𝑘,
𝑣𝑖 = 𝑐𝑎𝑟𝑑( 𝑡𝑗 = 𝑑𝑖 𝑗 𝑖𝑛 1. . 𝑁)

gcc(t, d, v) holds iff

Filtering algorithms for gcc are based on max flow computations in 
a network flow [Regin AAAI’96]



Example

gcc( (F1, F2, F3),  (1,2,3,4,5,6),  (V1,V2,V3,V4,V5,V6))   
means that: 

In a solution of TSR
TC1 covers exactly  V1 requirements in (F1, F2, F3)
TC2 ‘’                  V2 ‘’
TC3 ‘’                  V3 ‘’
...
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Here, for example,   V1 = 1,  V2 = 2,  V3 = 1,  V4 = 0, V5 = 0, V6 = 0 is a feasible solution

Where  F1, F2, F3, V1, V2, V3, ... denote finite-domain variables 

F1 in {1, 2, 6},  F2 in {3, 4},  F3 in {2, 5}
V1 in {0, 1}, V2 in {0, 2}, V3 in {0, 1}, V4 in {0, 1}, V5 in {0, 1}, V6 in {0, 1}

But, not an optimal one!



Optimal TSR

F1 in {1, 2, 6},  F2 in {3, 4},  F3 in {2, 5}
gcc( (F1, F2, F3), (1,2,3,4,5,6), (V1, V2, V3, V4, V5, V6) ),  
gcc((V1, V2, V3, V4, V5, V6), (0-_), (Max0Req-_ )),   
label(maximize(Max0Req))        

/* search heuristics by enumerating the Vi first */
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Optimal TSR: CP model with two gcc (2)
[Gotlieb Marijan ISSTA’2014]



Introducing model pre-treatment

F1 in {1, 2, 6}  F1 = 2   as cov(TC1) = cov(TC6)  cov(TC2)
withdraw TC1 and TC6
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F3 is covered  withdraw TC5

F2 in {3,4}  e.g., F2 = 3, withdraw TC4

Three such pre-treatment rules have been identified and can be 
included to simplify the problem

But, they are currently statically applied!



Optimal TSR

F1 in {1, 2, 6},  F2 in {3, 4},  F3 in {2, 5}
gcc( (F1, F2, F3), (1,2,3,4,5,6), (V1, V2, V3, V4, V5, V6) ),  
nvalue(MaxNvalue, (V1, V2, V3, V4, V5, V6)),   
label(minimize(MaxNvalue))        

/* + pre-treatment + labelling heuristics based on max */

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

3. Optimal TSR:  CP model Mixt (3)



Model comparison on random instances
(Reduced Test Suite percentage in 30sec of search)



Model comparison on random instances
(CPU time to find a global optimum)



Comparison with other approaches
(Reduced Test Suite percentage in 60 sec)



Optimized 
(reduced/ 
prioritized) 
test suite

TITAN [Marijan et al. SPLC’13, SPLC’14]

Unoptimized 
test suite

Diagnostic views, feature coverage

Variability model to 
describe a software 
product line

Industrial case 
studies: ABB, Cisco



Automatic Test Case Generation



f(  int i, …  )

{

a.    j = 100;

while( i > 1)

b.        { j++ ; i-- ;}

…

d. if( j > 500)

e. …
d

b

a

f

t

t

f

An example problem

…

value of i to reach e ?

e

Undecideable problem!



f(  int i, …  )

{

a.    j = 100;

while( i > 1)

b.        { j++ ; i-- ;}

…

d. if( j > 500)

e. …

d

b
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f

Path-oriented exploration 

…

1. Path selection

e.g., (a-b)14-…-d-e      

2. Path condition generation (via symbolic exec.)

j1=100, i1>1, j2=j1+1, i2=i1-1, i2>1,…, j15>500

3. Path condition solving
unsatisfiable  FAIL

Backtrack !

e



f(  int i, …  )

{

a.    j = 100;

while( i > 1)

b.        { j++ ; i-- ;}

…

d. if( j > 500)

e. …

d

b

a

f

t

t

f

Constraint-based program exploration 
(Gotlieb et al. ISSTA’98) 

…

1. Program (under Static Single Assignment form) as constraints

2. Control dependencies generation;

j1=100,  i3 ≤ 1,  j3 > 500

3. Global constraint reasoning

j1  j3 entailed unroll the loop 400 times  i1 in   401 .. 231-1

No backtrack !

e



Program as constraints

 Type declaration: signed long x;    x in -231..231-1

 Assignments: i*=++i ;  i2 = (i1+1)2

 Memory and array accesses and updates (Charreteur et al. JSS’09, Bardin et al. CPAIOR’12): 

v=A[i]   ( or  p=Mem[&p] )     variations of  element/3

 Control structures:  dedicated global constraints

Conditionnals (SSA)   if D then C1; else C2  ite/6

Loops (SSA)     while D do C                  w/5



Conditional as a global constraint: ite/6

ite( x > 0, j1, j2, j3,    j1 = 5,   j2 = 18 )   iff

if( x > 0 )

3

2

0

j2 =  18;

= …. j3 …

 ( x > 0   j1 = 5   j3 = j1 )   (x > 0)  j2 = 18  j3 = j2

 ( (x > 0)  j3 = j2 )    x > 0  j1 = 5   j3 = j1

 Join( x > 0  j1 = 5  j3 = j1 ,   (x > 0)  j1 = 18  j3 = j2 )

 x > 0        j1 = 5    j3 = j1 

 (x > 0)    j2 = 18    j3 = j2

j1 =  5; 1

Implemented as a global constraint: interface, awakening conditions, filtering algo.



While loop as a global constraint:  w/5  

v3 = ( v1 , v2 )
while( Dec )

body

w(Dec, V1, V2, V3, body)   iff

 DecV3V1   bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)
 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1 )  DecV3V1  v3=v1

 (DecV3V1  v3=v1)    DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew) ,  DecV3V1  v3=v1)



f(  int i  ) {

j = 100;

while( i > 1)

{ j++ ; i-- ;}

…

if( j > 500)

… 

w(i3 > 1, (i,j1), (i2,j2), (i3,j3),  j2 = j3 + 1  i2 = i3 - 1)

i = 23, j1=100  ?

i3 = 1, j3 = 122

no

i3 = 10 ?

i in 401..231-1

j1 = 100,

j3 > 500  ?

w(Dec, V1, V2, V3, body) :-

 DecV3V1   bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)

 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1 )  DecV3V1  v3=v1

 (DecV3V1  v3=v1) 

DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew , 

DecV3V1  v3=v1)



Features of the w/5 relation

 It can be imbricated with other relations (e.g., nested loops w( cond1, 
v1,v2,v3, w(cond2, ...)) – It handles unbounded loops

 Managed by the solver as any other constraint (its consistency is iteratively
checked, awakening conditions, success/failure/suspension)   

 By construction, w is unfolded only when necessary but w may NOT 
terminate !  (only a semi-correct procedure)

 Join is implemented using Abstract Interpretation operators (interval union, 
Q-polyhedra weak-join operator, simple widening operators)

(Gotlieb et al. CL’2000, Denmat et al. CP’2006)



EUCLIDE: Automatic Test Case Generation for 
C Programs [Gotlieb ICST’09, KER’12]



Conclusions

• Global constraints  (existing ones or user-defined) can efficiently and effectively 
tackle difficult software testing problems – experimental results and industrial case 
studies

• So far, only a few subset of existing global constraints have been explored for that
purpose (e.g., nvalue, gcc, element, all_different,…)

• Some software testing problems require the creation of dedicated global 
constraints to facilitate disjunctive reasoning, case-based reasoning or probabilistic
reasoning

 there is room for research in that area!



Perspectives

 More industrial case studies for demonstrating the potential of global 
constraints for software testing applications

 Using GCC WITH COSTS to deal with bi-objective optimisation in test suite 
reduction (e.g., to also select test cases based on execution time in addition to 
reauirement coverage)

 Test Case Execution Scheduling with CUMULATIVE
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