Classical and Non-Classical Uses of SAT in Model-Checking

CP meets CAV
Master Class

Jean-François Raskin Université Libre de Bruxelles

Objectives

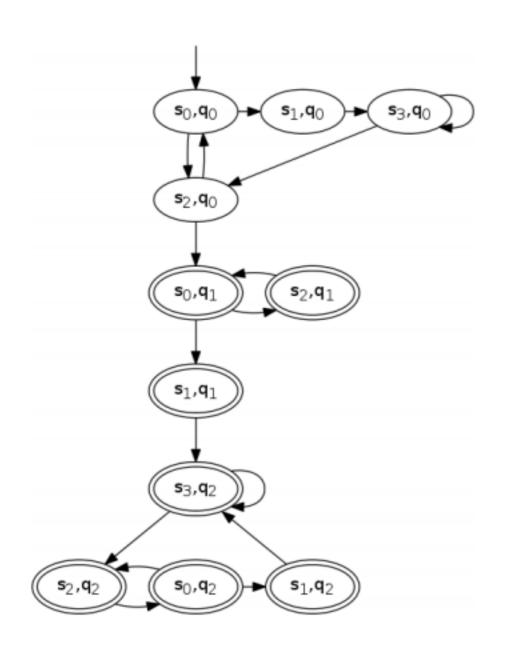
- Give representative examples of the use of SAT solvers in verification algorithms for finite state systems
- Disclaimer I: not my work
- Disclaimer II: by no means a full review of the literature (examples only)

Plan

- Bounded model-checking
- Unbounded model-checking
- Inductive invariant generation

Preliminaries

Transition Systems



The basic model for CAV of reactive systems

Transition systems

_

Directed graphs with labels

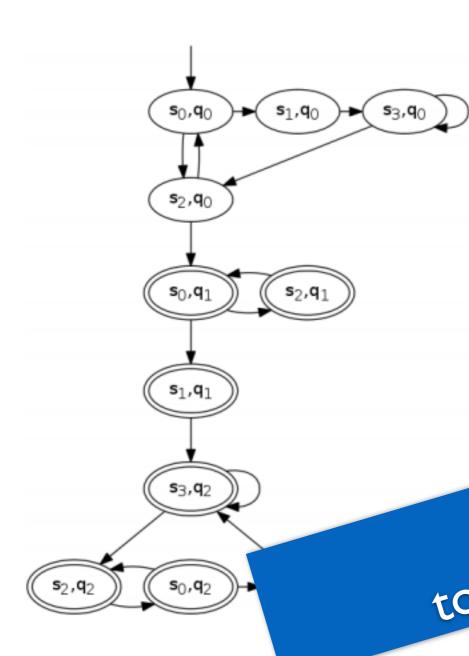
Vertices = System/Prg states

Edges = transitions

from states to states

Labels = basic properties of states

Transition Systems



The **basic** model for CAV of reactive systems

=

Transition systems

=

Directed graphs

Usually far too large

Usually far too large

Explicitly

Labels = basic properties of states

Symbolic transition systems

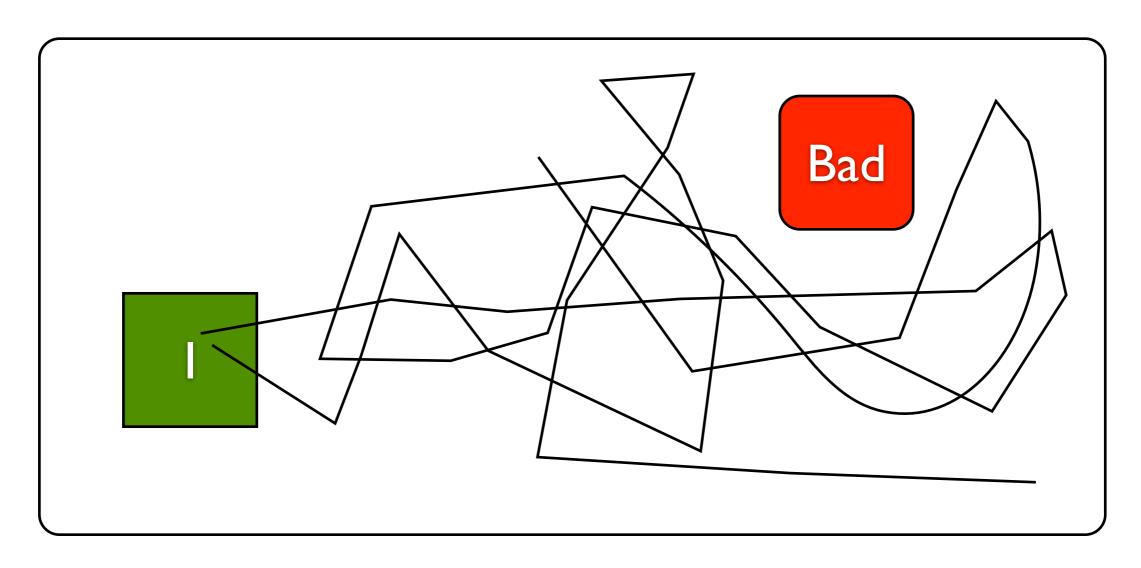
- Let $\mathfrak{B}(X)$ denotes the set of Boolean formulas over X, the variables of the system (or abstractions of them)
- For $F \in \mathfrak{B}(X)$, we note $[F] = \{ v : X \rightarrow \{0, I\} \mid v \models F \}$
- A Symbolic Transition System (STS) S=(X,I,T) where:
 - X is a set of boolean variables
 - $I \in \mathfrak{B}(X)$ defines the initial states
 - $T \in \mathfrak{B}(X \cup X')$ defines the transition relation

Symbolic transition systems

- We associate to STS=(X,I,T) an explicit, so exponentially larger, transition system TS=(S,S₀,E):
 - $S = \{ v \mid v : X \rightarrow \{0,1\} \}$
 - $S_0 = \{ v \in S \mid v \models I \} = [S_0]$
 - $E = \{ (v,v') \mid (v,v') \models T \} = [T]$

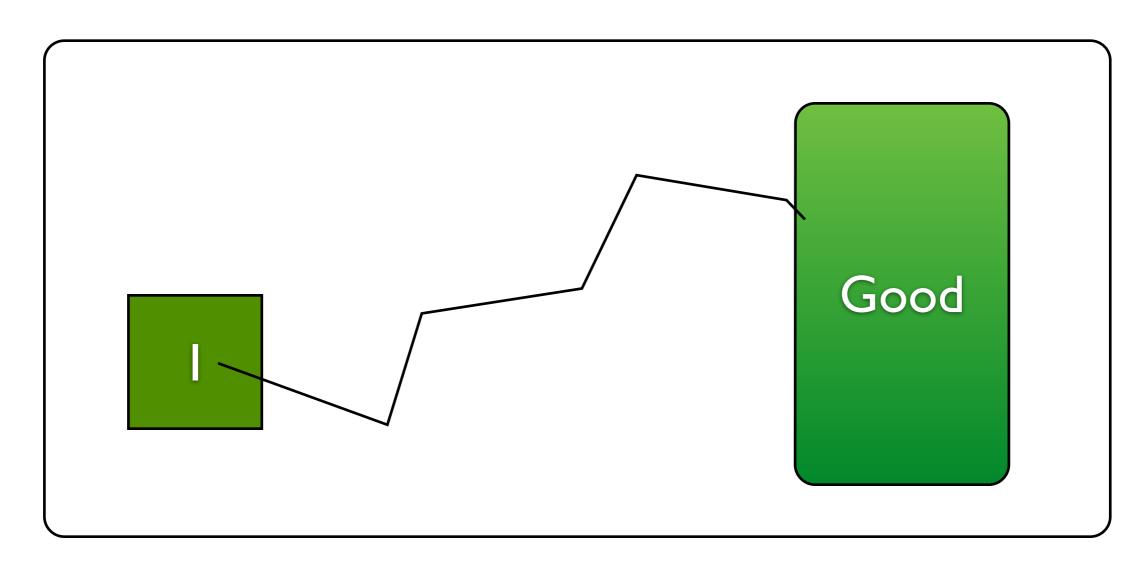
Typical verification questions

• Safety: do all the executions of the system avoid a given set of bad states?



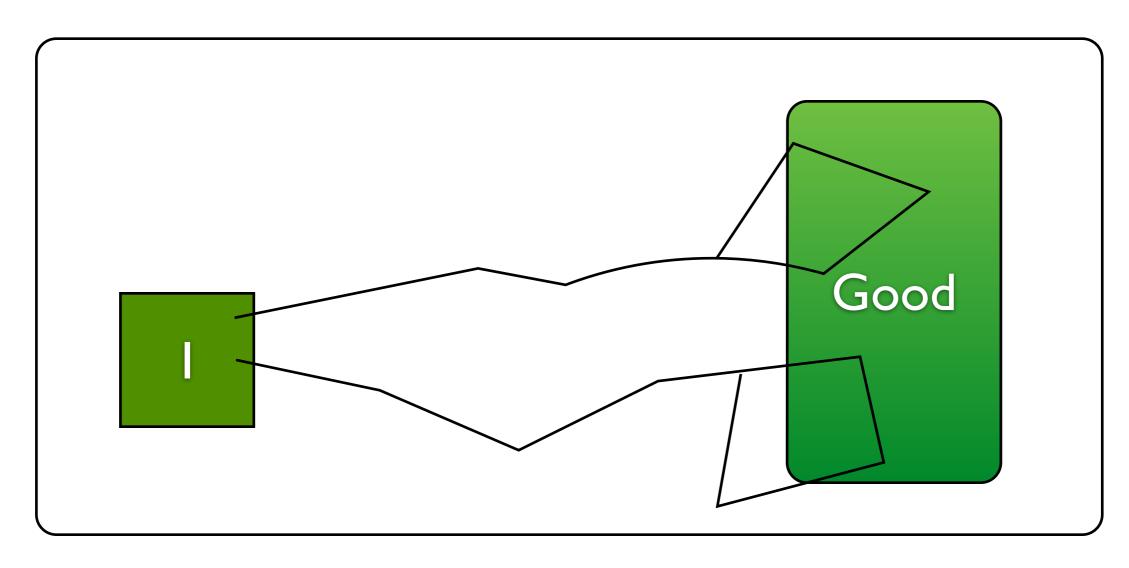
Typical verification questions

 Reachability: is there an execution of the system that reaches good states? dual of safety

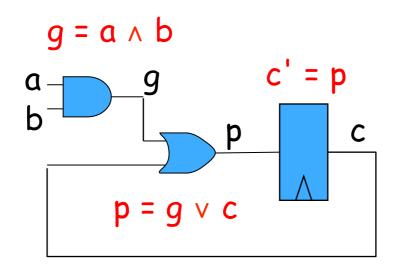


Typical verification questions

 Liveness: are all the executions of the system doing eventually/repeatedly something good?



Circuit Example



From McMillan03

Model:

Can we reach a state of the circuit in which cap holds?

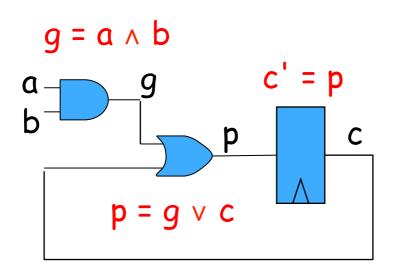
Bounded model-checking [BCC+99]

Bounded model-checking

- Falsifying safety properties
- Let STS=(X,I,T) and $Bad \in \mathfrak{B}(X)$
- Is there a [T]-path from [I] to [Bad]?
- Bound:

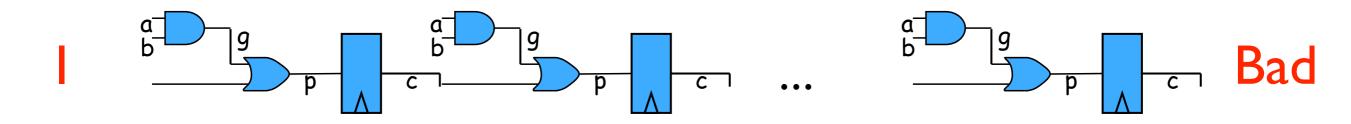
Is there a [T]-path from [I] to [Bad] of length at most k?

System unfolding



Model:

k unfolding



Can the circuit reach a state where c is true in at most k steps?

Unfolding of T

Unfolding of T k times:

$$T(X_0,X_1)\wedge T(X_1,X_2)\wedge...\wedge T(X_{k-2},X_{k-1})$$

Use SAT solver to check satisfiability of

$$I(X_0) \land T(X_0,X_1) \land T(X_1,X_2) \land ... \land T(X_{k-2},X_{k-1}) \land \bigvee_{i=0..k-1} Bad(X_i)$$

- A satisfying assignment corresponds to a path of length at most k from [I] to [Bad], i.e. a counter-example to the safety property
- Formulas above can easily be expressed as sets of clauses and so can be readily analyzed by a Boolean SAT solver

Completeness threshold

- Diameter of a system = length of the longest simple path in the transition system
- Bounded model-checking for safety property with a bound k=diameter of the system ensures completeness
- Unfortunately, computing the diameter of a symbolic transition system is hard. Indeed deciding if the diameter of a symbolic transition system is equal to k is PSpace-C (so as hard as the verification problem itself)

Beyond safety

- Let Good $\in \mathfrak{B}(x)$
- Given an infinite path ρ in TS, we note $Inf(\rho)$ the set of states that appear infinitely many times along ρ
- An infinite path in TS is **good** if $Inf(\rho) \cap [Good] \neq \emptyset$
- Liveness: check that all paths in TS are good
- Counter-examples are lasso-path such that the cycle does not contain any good states
- Bound: find a lasso-path of length at most k that does not cross
 [Good] in the lasso part

Beyond safety

• Encoding in SAT:

$$I(X_0)$$

$$\wedge T(X_0,X_1)\wedge...\wedge T(X_{k-2},X_{k-1})$$

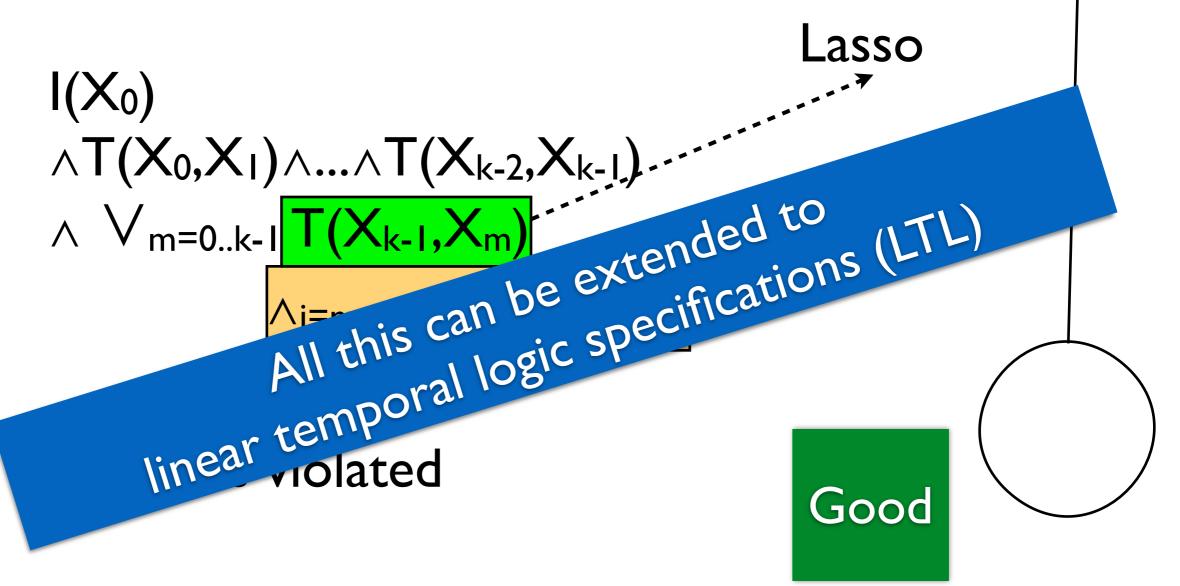
$$\wedge \bigvee_{m=0..k-1} T(X_{k-1},X_m)$$

$$\wedge j=m..k-1 \neg Good(X_j)$$
Liveness is violated

Good

Beyond safety

• Encoding in SAT:



Unbounded Model-Checking

Four examples of unbounded SAT based MC

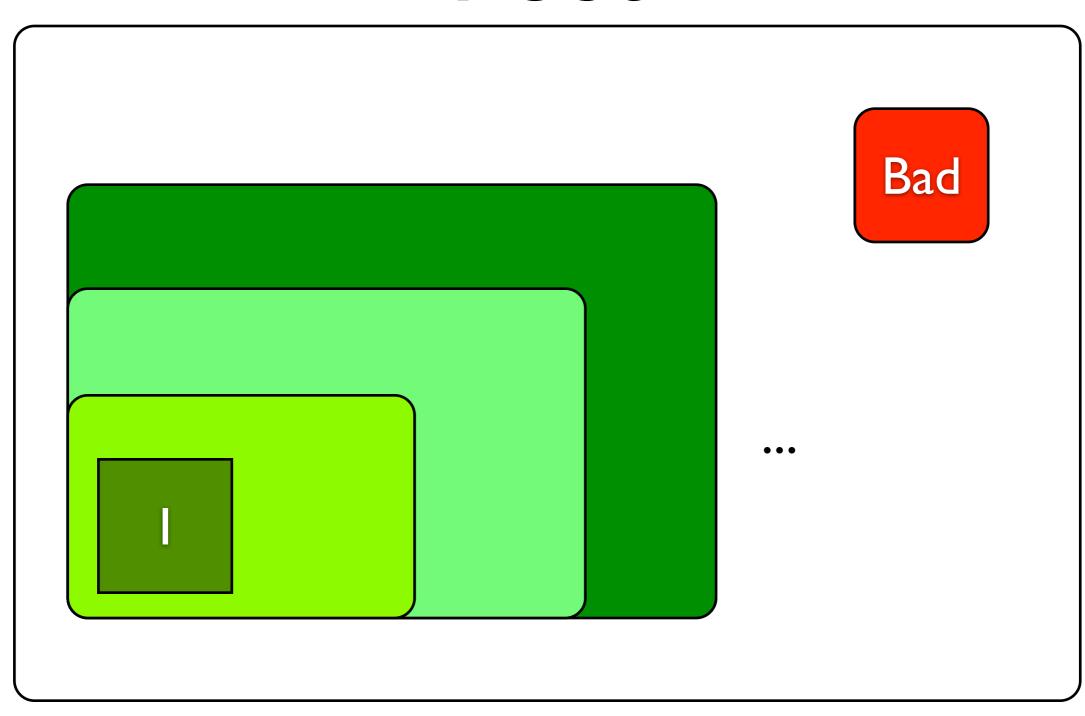
- Symbolic Reachability Analysis based on SAT Solvers [ABE00]
- Unbounded Sat-based model-checking with abstractions [CCKSVW02] + McMillan variant
- Interpolation and unbounded SAT-based model-checking [McMillan03]
- Discovering inductive invariants in subset constructions

Symbolic Reachability Analysis based on SAT Solvers [ABE00]

Symbolic Forward/Backward Reachability

- Let STS=(X,I,T) and let $Bad \in \mathfrak{B}(X)$
- ReachFwd(I) is the least set of states R such that R=[I]∪Post[T](R)

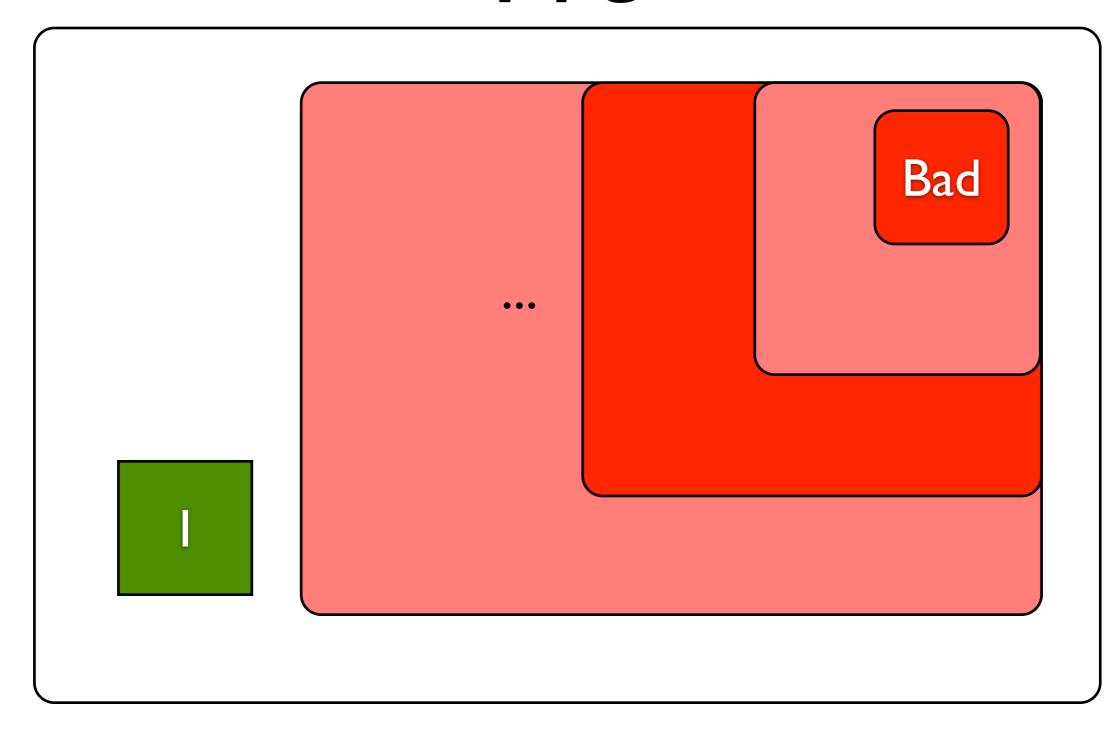
Forward exploration Post



Symbolic Forward/Backward Reachability

- Let STS=(X,I,T) and let $Bad \in \mathfrak{B}(X)$
- ReachFwd(I) is the least set of states R such that R=[I]∪Post[T](R)
- ReachBack(Bad) is the least set of states B such that B=[Bad]∪Pre[T](B)

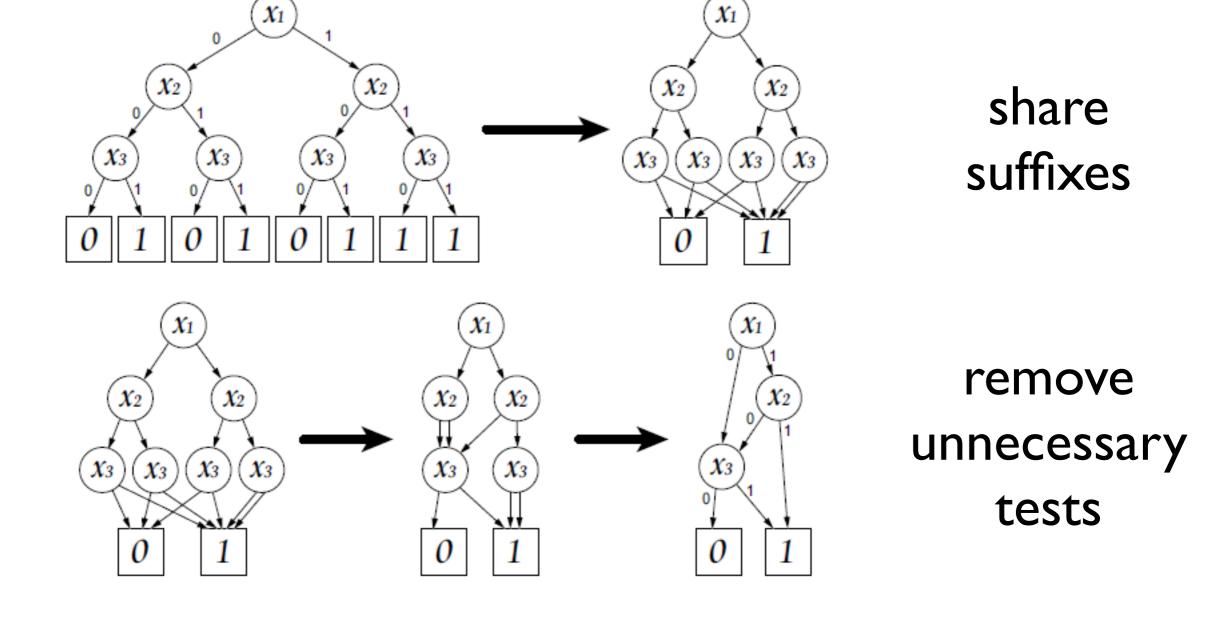
Backward exploration Pre



Symbolic Forward/Backward Reachability

- Let STS=(X,I,T) and let Bad $\in \mathfrak{B}(X)$
- ReachFwd(I) is the least set of states R such that R=[I]∪Post[T](R)
- ReachBack(Bad) is the least set of states B such that B=[Bad]∪Pre[T](B)
- Symbolic MC: fixpoints+data structures for manipulating sets symbolically

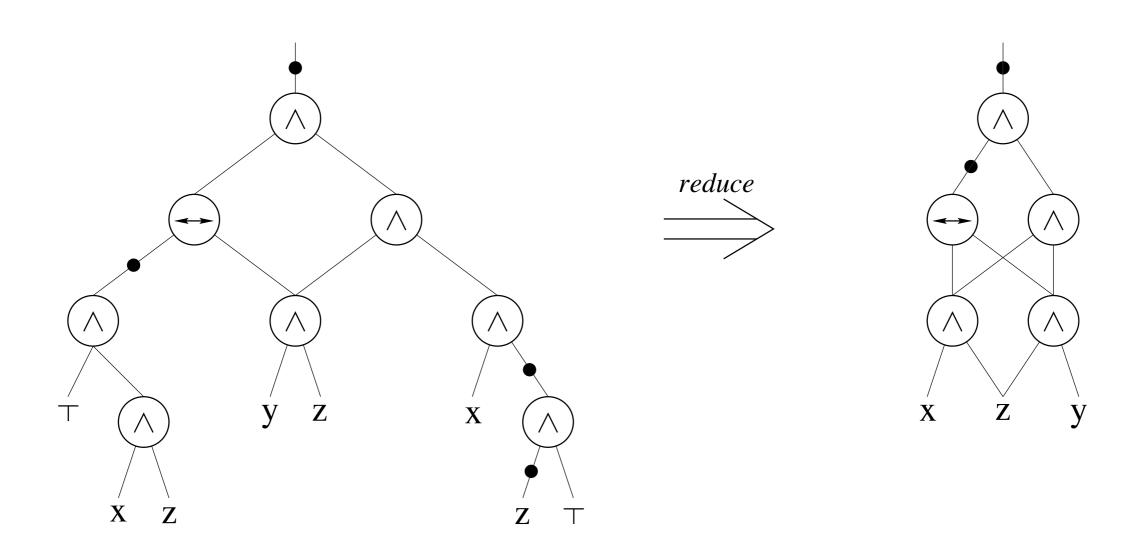
BDDs



BDDs - Canonicity and Succinctness

- BDDs are canonical representation for Boolean functions
- Make very easy to check fixed-point
- Fact: some Boolean functions have provably large
 BDD representations, e.g. binary multiplication
- Idea: use potentially more compact representations... at the expense of canonicity and (maybe) some algorithmic efficiency

Boolean circuits



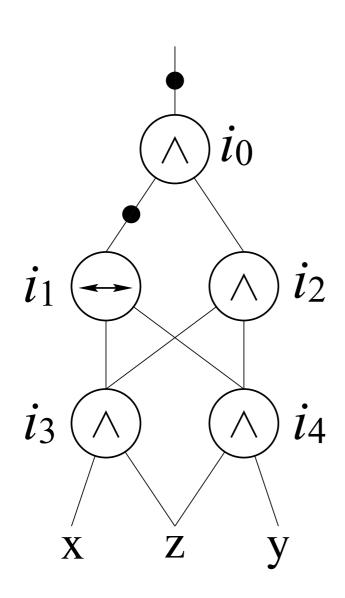
Boolean circuits

- As BDDs, Boolean circuits represent sets of valuations (=states)
- There is no (useful) canonical form
- There are often more compact than BDDs
- Algorithms exists for Boolean op. (obviously) and for computing PRE and POST images
- Satisfiability is NP-Complete

Boolean circuits

- As BDDs, Boolean circuits represent sets of valuations (=states)
- There is no (useful) canonical form
- There are often more compact than BDDs
- Algorithms exists for Boolean op. (obviously) and for computing PRE and POST images
- Satisfiability is NP-Complete

Checking satisfiability of Boolean circuits with SAT



$$(i_{0} \leftrightarrow \neg i_{1} \land i_{2})$$

$$\land (i_{1} \leftrightarrow i_{3} \leftrightarrow i_{4})$$

$$\land (i_{2} \leftrightarrow i_{3} \land i_{4})$$

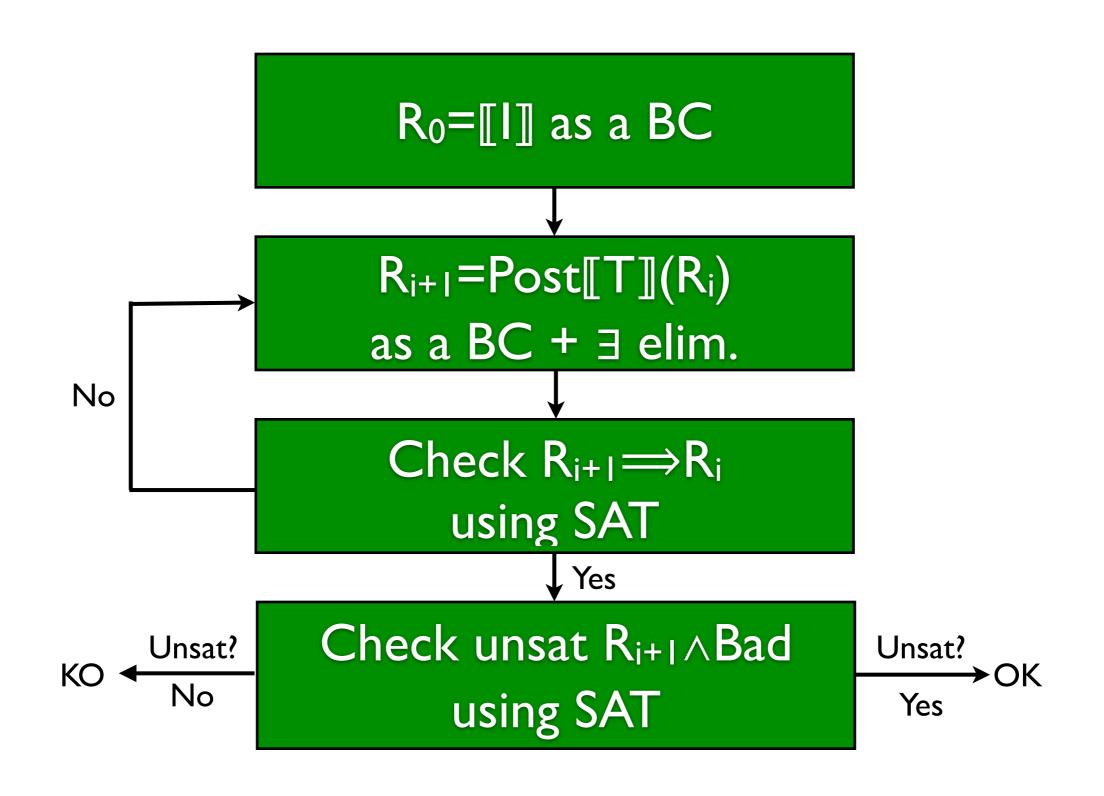
$$\land (i_{3} \leftrightarrow x \land z)$$

$$\land (i_{4} \leftrightarrow z \land y)$$

$$\land \neg i_{0}$$

Not equivalent but satisfiability is maintained

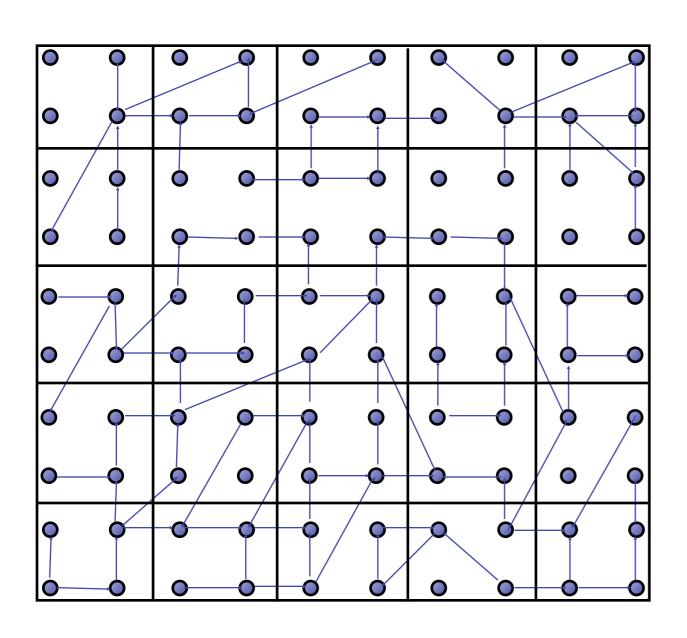
SMC algorithm using BC and SAT



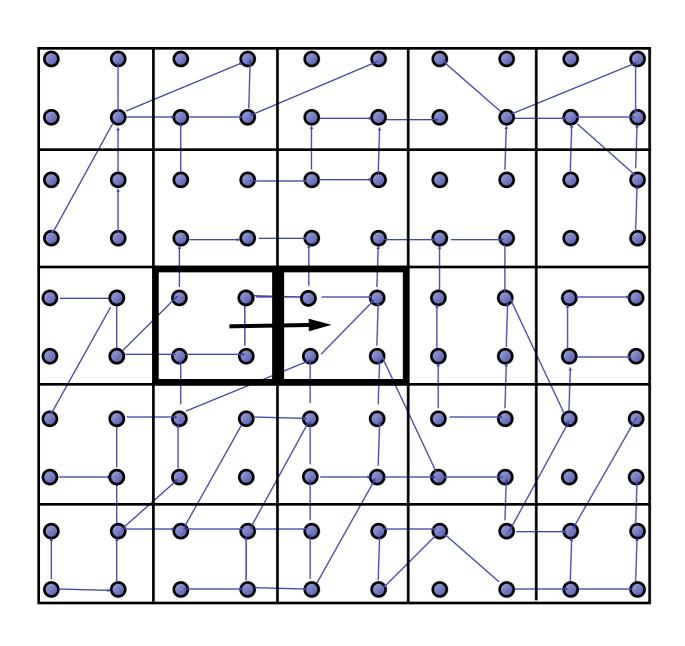
Unbounded SAT-based model-checking with abstractions [CCKSVW02]

Abstractions

- Symbolic model-checking sensitive to the number of Boolean variables (symbolic state explosion problem)
- But (coarse) abstractions are often sufficient to prove correctness
- Try to lower the number of variables using abstraction



- Predicates on program/circuit state space
- States satisfying the same predicates are (considered) equivalent
- Merged into one abstract state

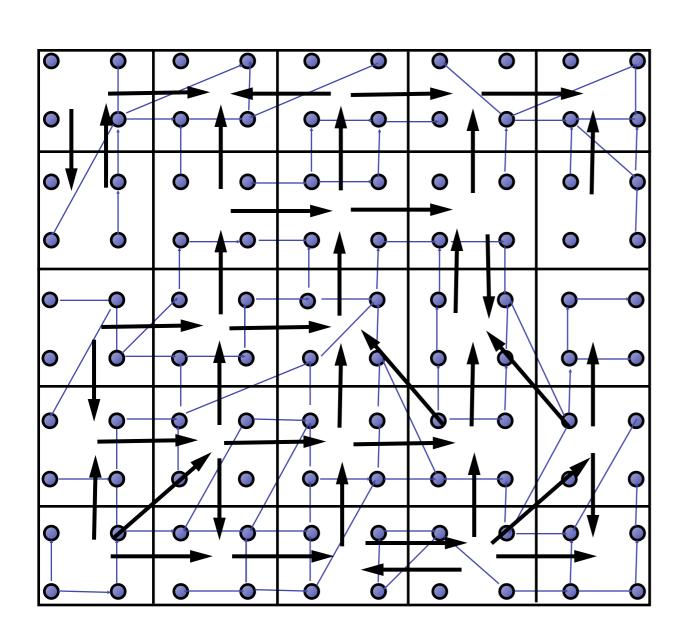


Abstract transition relation

 $T^{\alpha}(A_1,A_2)$

iff

 $\exists_{s_1 \in A_1} \cdot \exists_{s_2 \in A_2} \cdot T(s_1, s_2)$



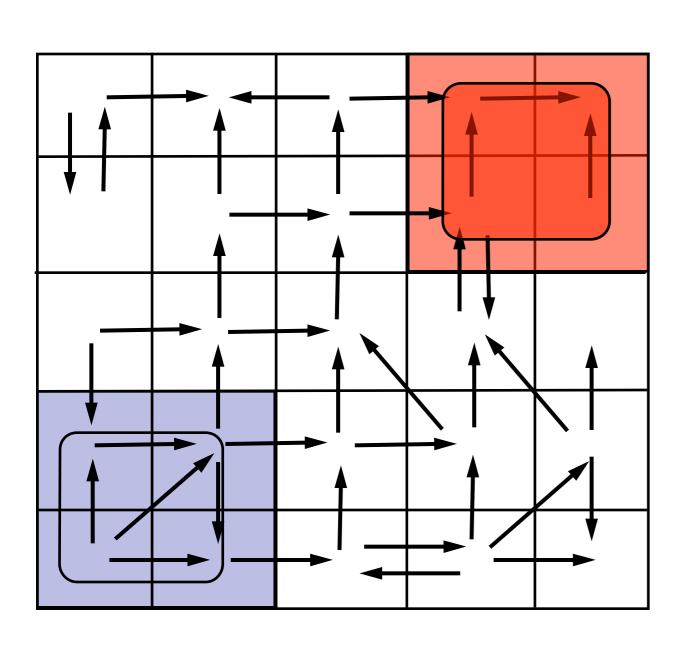
Abstract transition relation

 $T^{\alpha}(A_1,A_2)$

iff

$$\exists_{s_1 \in A_1} \cdot \exists_{s_2 \in A_2} \cdot T(s_1, s_2)$$

Existential Lifting



Analyze the abstract graph

Overapproximation:

Safe ⇒ System Safe

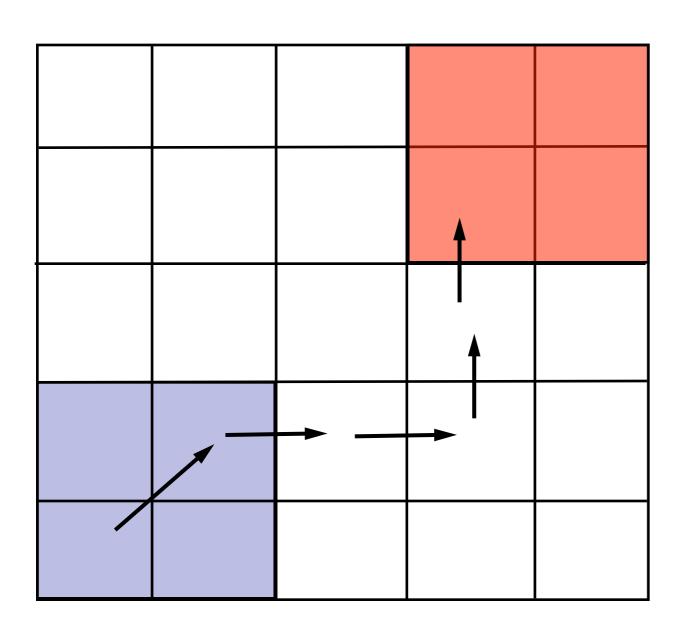
No false positives

Problem

Spurious counterexamples

Counterex.-Guided Refinement

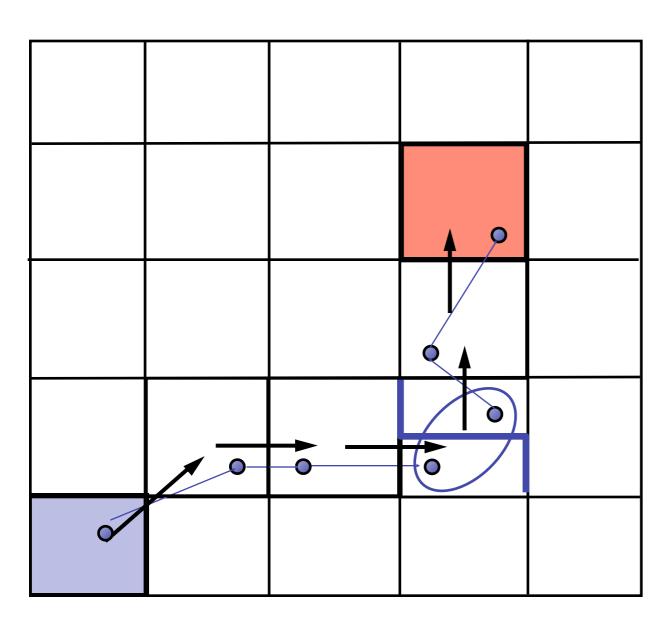
[Kurshan et al93] [Clarke et al 00][Ball-Rajamani 01]



Solution
Use spurious
counterexamples
to refine abstraction!

Counterex.-Guided Refinement

[Kurshan et al93] [Clarke et al 00][Ball-Rajamani 01]



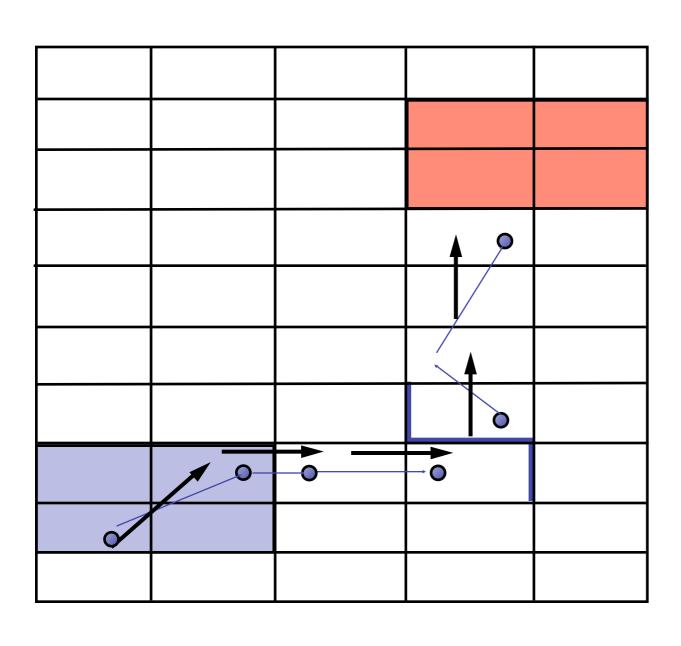
Solution

Use spurious counterexamples to refine abstraction

- I. Add predicates to distinguish states across cut
- 2. Build refined abstraction

Imprecision due to merge

Iterative Abstraction-Refinement

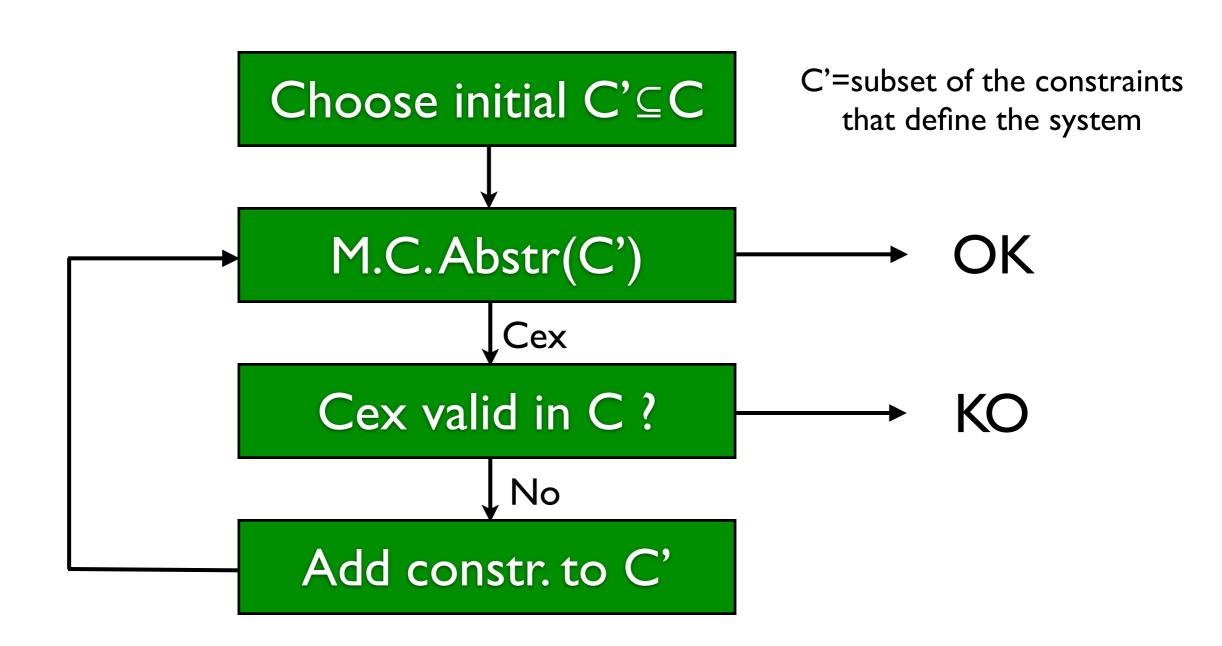


Solution

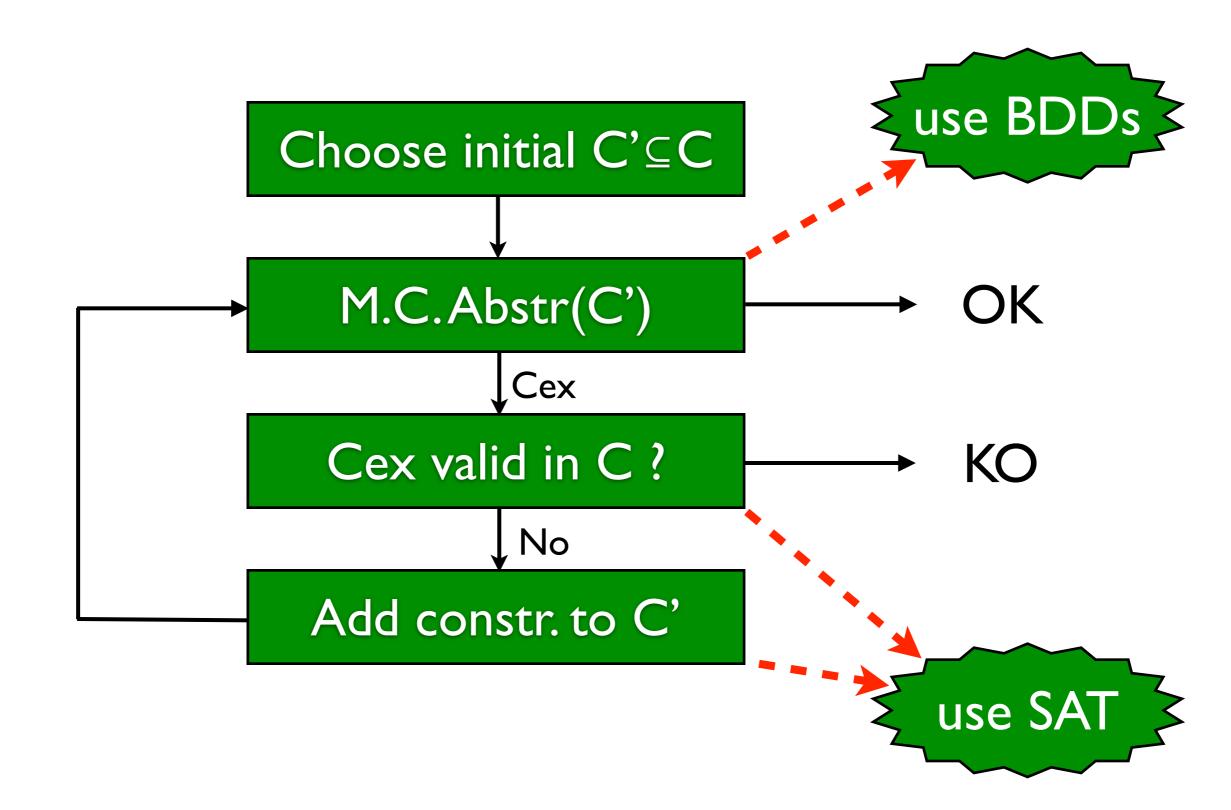
Use spurious **counterexamples** to **refine** abstraction

- I.Add predicates to distinguish states across **cut**
- 2. Build **refined** abstraction -eliminates counterexample
- 3. Repeat search
 Till real counterexample
 or system proved safe

Abstraction refinement



Abstraction refinement



Abstract Cex - Safety

- Abstract variables Y=Support(C',I,Bad)
- Abstract system is model-checked using BDD-based symbolic MC with variables in Y only and $|Y| \ll |X|$
- Abstract counter-example is a truth assignment to $\{y_t \mid y \in Y \land 0 \le t \le k \}$ where k is the number of steps in the counter-example

Concretization of Cex

- The abstract Cex A^{α} satisfies: $A^{\alpha}(Y) = I(Y_0) \wedge T_{0..k-1}(Y_0,...,Y_{k-1}) \wedge \bigvee_{i=0..k-1} Bad(Y_i)$
- Search for a concrete A consistent with A^{α} :

$$A^{\alpha}(Y) \wedge I(X_0) \wedge T_{0..k-1}(X_0,...,X_{k-1}) \wedge \bigvee_{i=0..k-1} Bad(X_i)$$

- =BMC but guided by the abstract Cex
- If unsat Cex cannot be made concrete and it is spurious

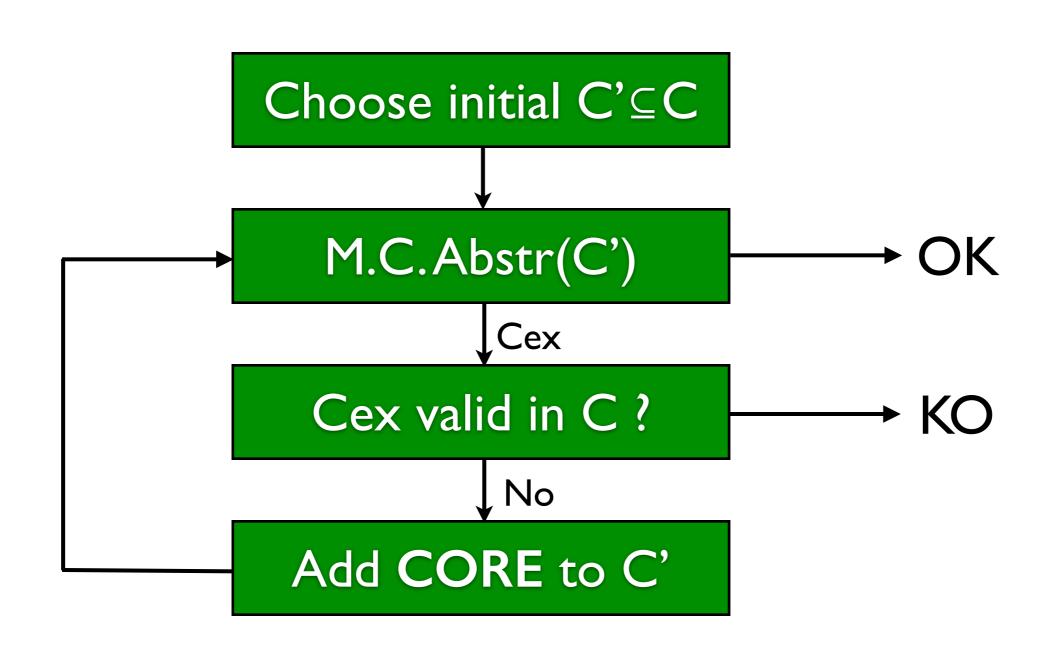
Refinement

- Refinement: add constraints to C'
- Goal: to eliminate the Cex in the next abstract model
- There are many technics for that
- One based on SAT machinery: use resolution based refutation of the unsat formula that defines the concretization of the abstract counter-example

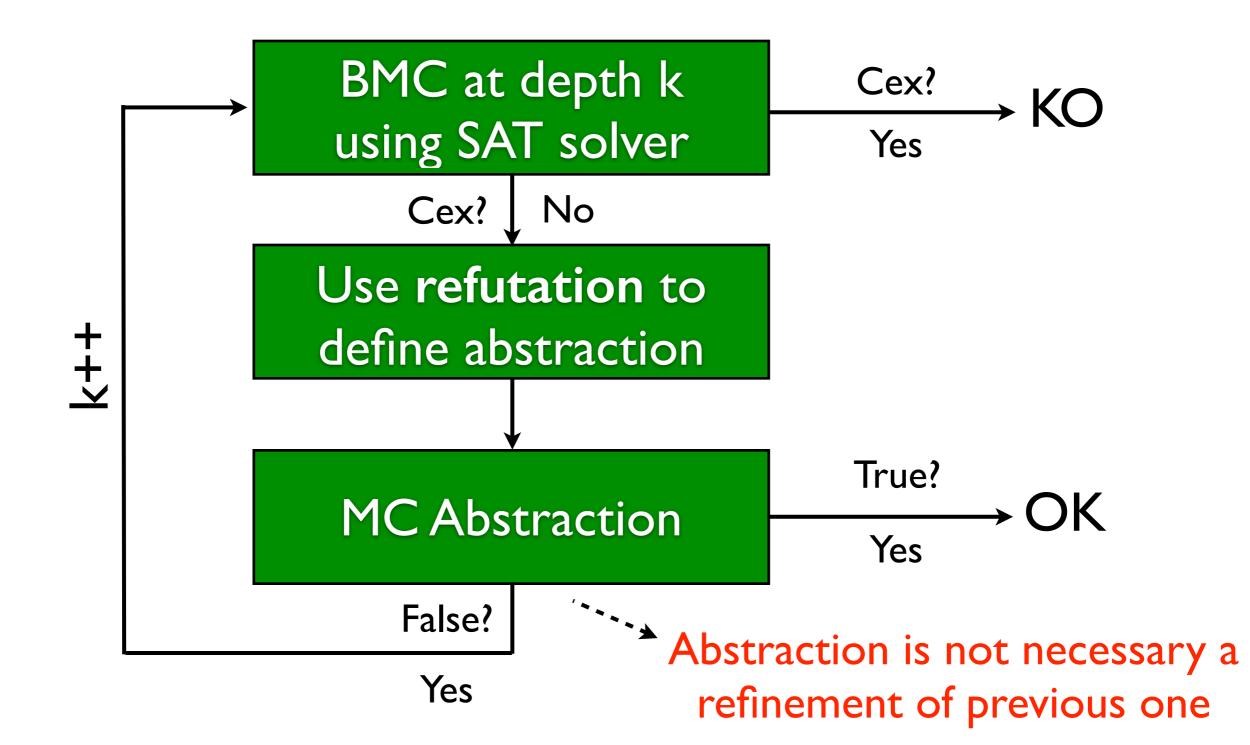
Resolution based refinement

- $A^{\alpha}(Y) \wedge I(X_0) \wedge T_{0..k-1}(X_0,...,X_{k-1}) \wedge \vee_{i=0..k-1} Bad(X_i)$ is unsatisfiable
- SAT solver returns unsatisfiable and produce an UNSAT CORE
- A^α cannot be extended to a concrete Cex:
 CORE is sufficient to prove it
- Add CORE to C'

Abstraction refinement



Variation [McMillan03]



Interpolation based unbounded Sat-based model-checking [McMillan03]

Interpolant

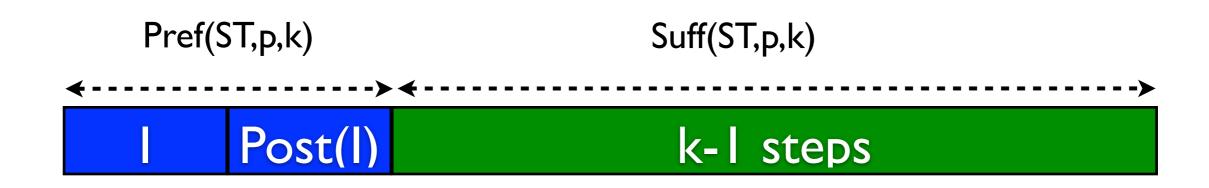
- An interpolant I for an unsatisfiable formula $A \wedge B$ is a formula such that
 - ◆ A ⇒ I% I overapproximates A
 - I∧B is unsatisfiable
 - I only refers to the common variables of A and B
- Ex: $A = p \land q$, $B = \neg q \land r$, I = q
- Intuitively, I is the set of facts that the SAT solver considers relevant to prove $A \land B$ unsatisfiable

Interpolation and SAT-MC

- First, call BMC(ST,p,k) p=invariant?
- Decompose BMC(ST,p,k) into Pref(ST,p,k)∧Suff(ST,p,k), where
 - Pref(ST,p,k)≡init+first transition
 - Suff(ST,p,k)=k-1 last transitions+ $\neg p$
 - if formula is SAT, we have Cex
- Otherwise, compute
 ¶ for Pref(ST,p,k) ∧ Suff(ST,p,k)

Pref(ST,p,k) Suff(ST,p,k)

Interpolation and SAT-MC



Fact: the interpolant I overapproximates the set of initial states and those accessible in one step and that do not lead to bad states within k steps (quality of the overapproximation)

Idea: iterate from a new set of initial states: I

```
procedure interpolation (M, p)
1. initialize k
2. while true do
3.
      if BMC(M, p, k) is SAT then return counterexample
     R = I
4.
5.
     while true do
6.
            M' = (S, R, T, L)
7.
            let C = Pref(M', p, k) \wedge Suff(M', p, k)
            if C is SAT then break (goto line 15)
8.
           /* C is UNSAT */
9.
10.
            compute interpolant \mathcal{I} of Pref(M', p, k) \wedge Suff(M', p, k)
            R' = \mathcal{I} is an over-approximation of states reachable from R in one step.
11.
            if R \Rightarrow R' then return verified
12.
            R = R \vee R'
13.
14.
      end while
      increase k
15.
16. end while
end
```

```
procedure interpolation (M, p)
                                                         Discover negative instances
1. initialize k
2. while true do
     if BMC(M, p, k) is SAT then return counterexample
3.
     R = I
4.
5.
      while true do
6.
           M' = (S, R, T, L)
7.
           let C = Pref(M', p, k) \wedge Suff(M', p, k)
8.
           if C is SAT then break (goto line 15)
           /* C is UNSAT */
9.
10.
           compute interpolant \mathcal{I} of Pref(M', p, k) \wedge Suff(M', p, k)
           R' = \mathcal{I} is an over-approximation of states reachable from R in one step.
11.
           if R \Rightarrow R' then return verified
12.
            R = R \vee R'
13.
      end while
14.
     increase k
15.
16. end while
end
```

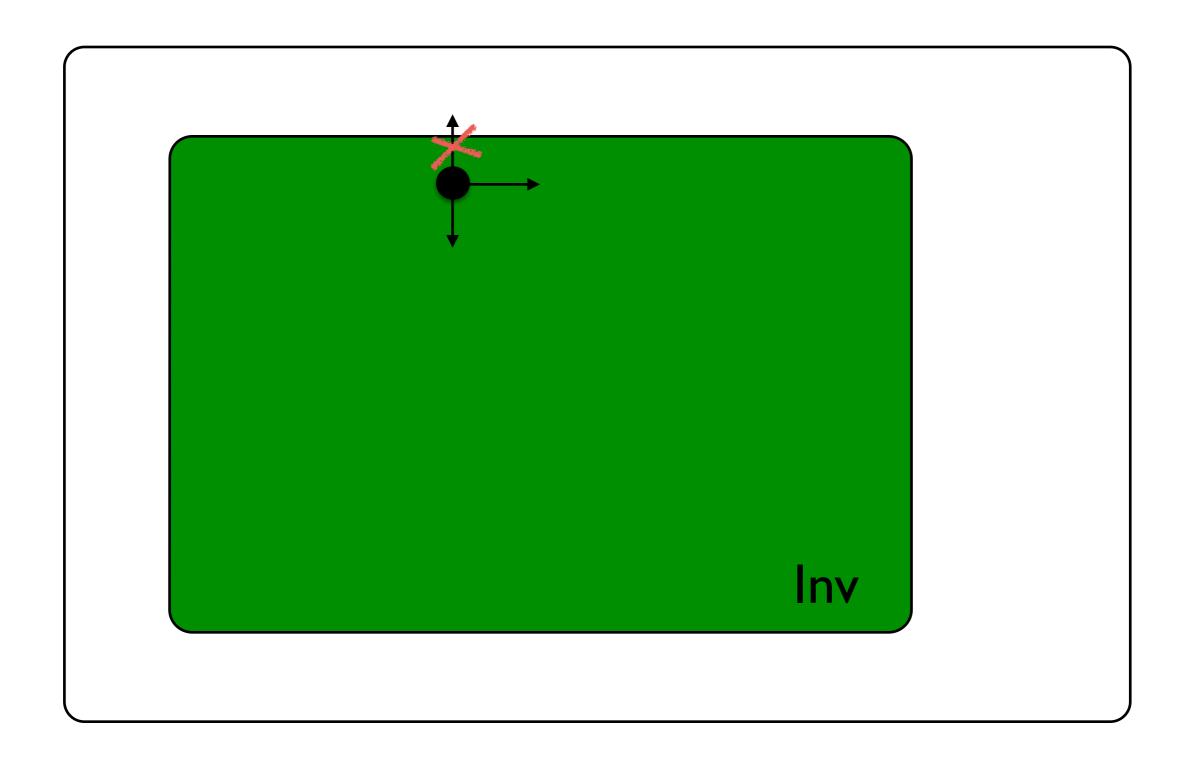
```
procedure interpolation (M, p)
1. initialize k
2. while true do
3.
      if BMC(M, p, k) is SAT then return counterexample
     R = I
4.
     while true do
5.
            M' = (S, R, T, L)
6.
           let C = Pref(M', p, k) \land Suff(M', p, k)
7.
            if C is SAT then break (goto line 15)
            /* C is UNSAT */
9.
           compute interpolant \mathcal{I} of Pref(M', p, k) \wedge Suff(M', p, k)
10.
           R' = \mathcal{I} is an over-approximation of states reachable from R in one step.
11.
           if R \Rightarrow R' then return verified
12.
            R = R \vee R'
13.
14.
      end while
     lincrease k
15.
                                      Potentially spurious counter-example
16. end while
                                            due to over-approximation
end
```

```
procedure interpolation (M, p)
1. initialize k
2. while true do
3.
      if BMC(M, p, k) is SAT then return counterexample
      R = I
4.
5.
      while true do
            M' \equiv (S, R, T, L)
6.
            let C = Pref(M', p, k) \wedge Suff(M', p, k)
if C is SAT then break (goto line 15)
7.
8.
             /* C is UNSAT */
9.
            compute interpolant \mathcal{I} of Pref(M', p, k) \wedge Suff(M', p, k)
10.
            R' = \mathcal{I} is an over-approximation of states reachable from R in one step.
11.
             if R \Rightarrow R' then return verified
12.
             R = R \vee R'
13.
      end while
14.
                                   Abstract fixpoint computation
      increase k
15.
                                           through interpolants
16. end while
end
```

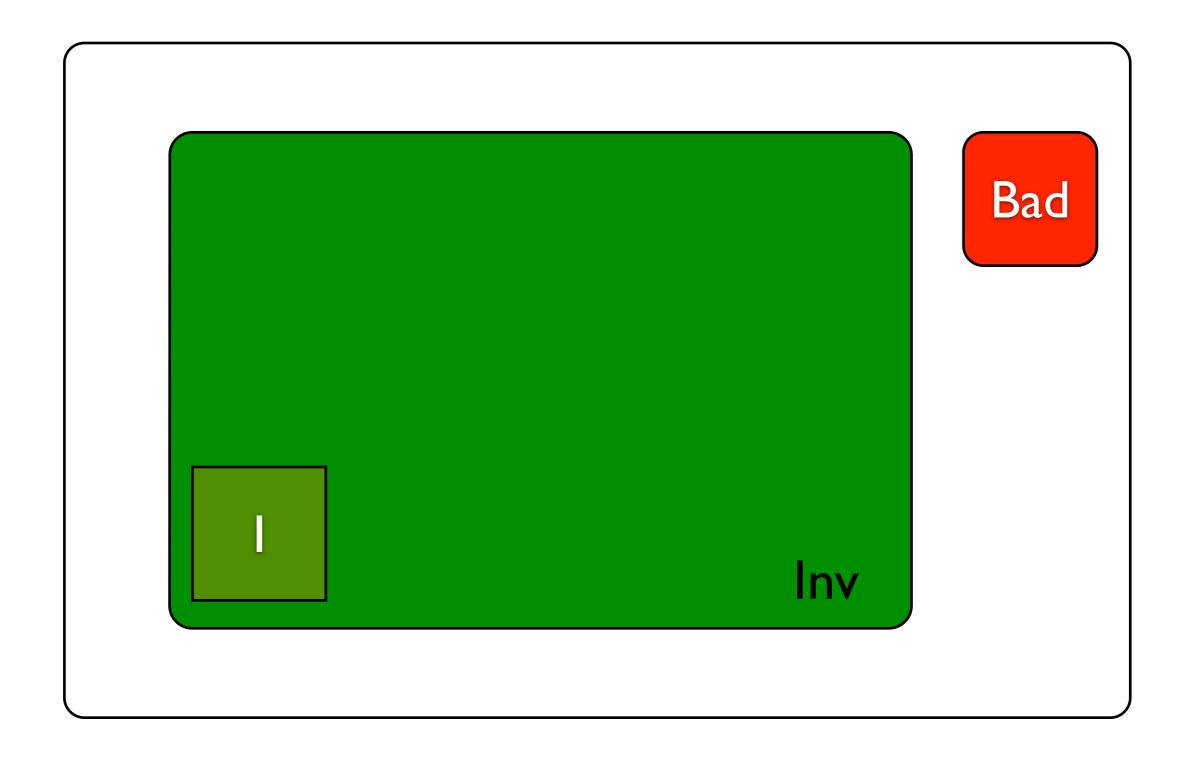
```
procedure interpolation (M, p)
1. initialize k
2. while true do
3.
      if BMC(M, p, k) is SAT then return counterexample
      R = I
4.
5.
      while true do
            M' = (\underline{S, R, T, L})
6.
            let C = Pref(M', p, k) \land Suff(M', p, k)
if C is SAT then break (goto line 15)
7.
8.
             /* C is UNSAT */
9.
            compute interpolant \mathcal{I} of Pref(M', p, k) \wedge Suff(M', p, k)
10.
            R' = \mathcal{I} is an over-approximation of states reachable from R in one step.
11.
            if R \Rightarrow R' then return verified
12.
             R = R \vee R'
13.
      end while
14.
                             when k=diameter, the abstract algorithm concludes!
      increase k
15.
16. end while
                                    But most often it concludes much earlier!
end
                                           This is a complete framework!
```

Discovering inductive invariants in subset constructions

Inductive invariants



Inductive invariants



Verifying inductive invariants

- Let STS=(X,I,T) be a symbolic transition system
- Inv $\in \mathfrak{B}(X)$ is an inductive invariant iff

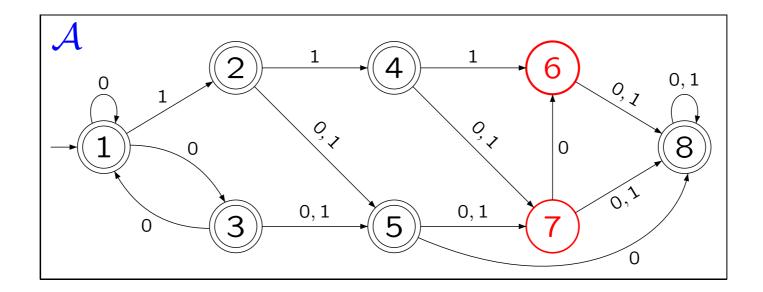
$$Inv(X) \wedge T(X,X') \Longrightarrow Inv(X')$$

 $\neg (Inv(X) \land T(X,X') \Longrightarrow Inv(X'))$ is UNSAT

How to discover inductive invariants?

Universality of NFA

• Nond. finite automata $A=(Q,\Sigma,q_0,\delta,F)$



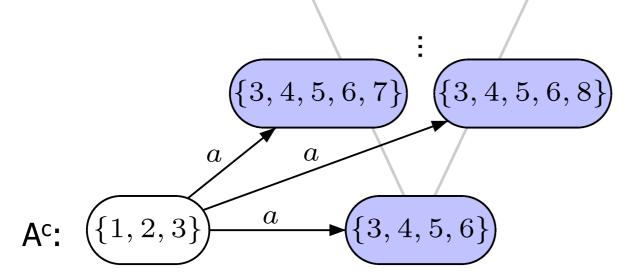
- $L(A) \neq \Sigma^*$ iff there exists a word w such that all runs on w end up in Q\F.
- Special case for $L(A)\subseteq {}^{?}L(B)$, PSpace-C.

Universality of NFA

- Can be solved through reachability in STS (subset construction)
- Hard because one Boolean variable per state of the automaton - BDDs do not scale
- But special class of STS: monotonicity
- There are practical alternative algorithms to BDDs, based on antichains for example

"Closed" subset construction

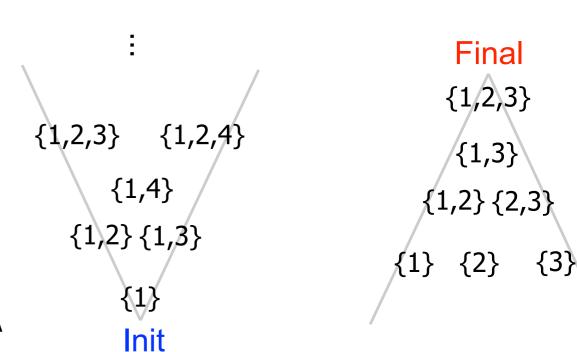
Transition relation can be "closed" without changing the language.



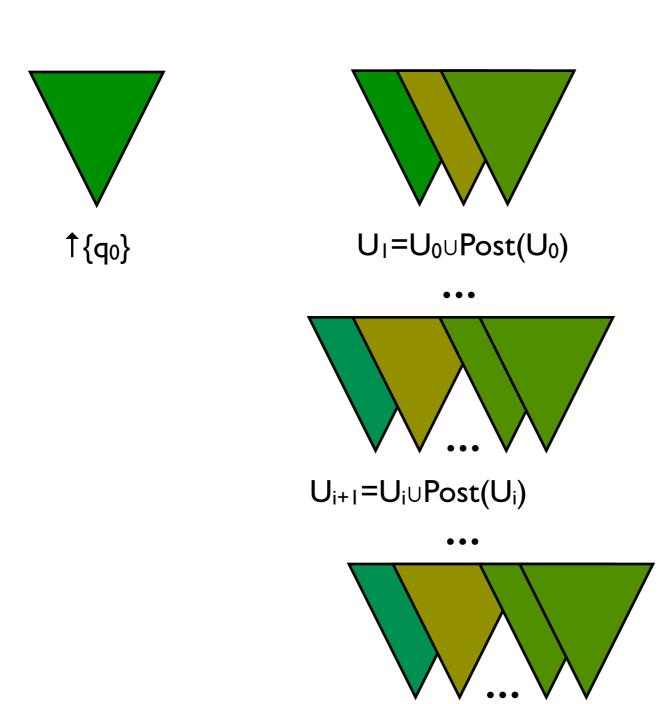
those sets can be added safely

Init: sets containing initial states of A

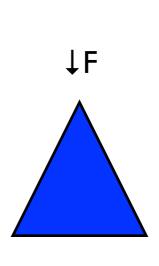
Final: sets containing no accepting states of A



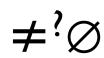
Forward analysis



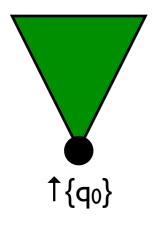
 $U^*=U^*\cup Post(U^*)$

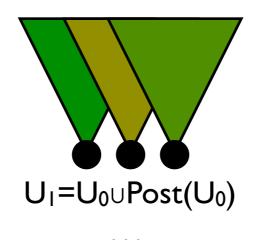


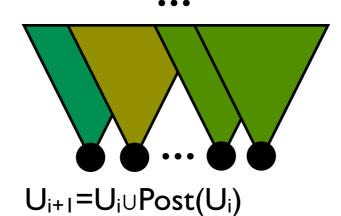
 \bigcap

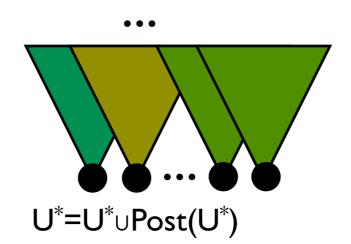


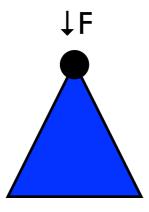
Forward analysis



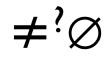




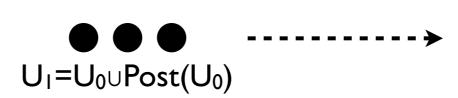




 \bigcap



Forward analysis with antichains



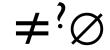
⊆-Upward-closed sets are canonically represented by their ⊆-minimal elements

Cab be very compact Orders of magnitude faster than BDDs

↓F

·

 \bigcap

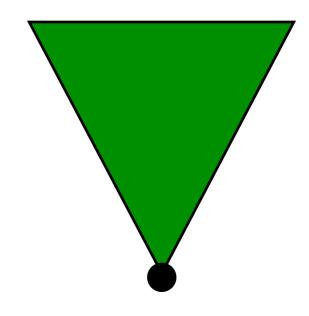


Discover post-fixpoint using SAT

- A set of sets \$\S\C2\Q\$ is a post-fixpoint of Post[A] if:
 - $\{q_0\} \in \mathbb{S}$
 - Post[A](S) ⊆ S
- Problem: find \$ such that $\$ \cap F = \emptyset$
- Rely on the antichain representation of §

Using SAT to synthesize \$

- Fix k the number of sets in the antichain
- $X=\{(q,i) \mid q \in Q \land I \leq i \leq k\}$
- any $v: X \rightarrow \{0,1\}$ represent an antichain



$$\{ q \mid v(q,i)=1 \}$$

set nr. i of the antichain

 S is a post-fixpoint of Post[A] and S does not intersect with \$\forall F\$

$$\bullet \ \bigwedge_{i=1}^{i=k} \bigwedge_{\sigma \in \Sigma} \bigvee_{j=1}^{j=k} \bigwedge_{(q,i) \in X} (q,i) \to \bigwedge_{(q,j)|q \in \delta(q,\sigma)} (q,j)$$

- $(q_0,1)$
- $\bullet \bigwedge_{i=1}^{i=k} \bigvee_{q \in F} \neg (q, i)$

Check that it is a post fixpoint for POST

 S is a post-fixpoint of Post[A] and S does not intersect with \$\forall F\$

$$\bullet \bigwedge_{i=1}^{i=k} \bigwedge_{\sigma \in \Sigma} \bigvee_{j=1}^{j=k} \bigwedge_{(q,i) \in X} (q,i) \to \bigwedge_{(q,j)|q \in \delta(q,\sigma)} (q,j)$$

- $(q_0, 1)$
- $\bullet \bigwedge_{i=1}^{i=k} \bigvee_{q \in F} \neg (q, i)$

Check that initial state of automaton is contained

 S is a post-fixpoint of Post[A] and S does not intersect with ↓F

$$\bullet \bigwedge_{i=1}^{i=k} \bigwedge_{\sigma \in \Sigma} \bigvee_{j=1}^{j=k} \bigwedge_{(q,i) \in X} (q,i) \to \bigwedge_{(q,j)|q \in \delta(q,\sigma)} (q,j)$$

- $(q_0,1)$
- $\bullet \bigwedge_{i=1}^{i=k} \bigvee_{q \in F} \neg (q, i)$

Check universality

S is a post-fixpoint of Post[A] and S does not intersect with JF

- $\bigwedge_{i=1}^{i=k} \bigwedge_{\sigma \in \Sigma} \bigvee_{j=1}^{j=k} \bigwedge_{(q,i) \in X} (q,i) \to \bigwedge_{(q,i) \in X} (q,i)$
- $(q_0, 1)$
- Similar to template based inductive invariant generation using SMT solvers

Conclusion

- There are several uses of SAT solvers beyond Bounded MC
- SAT can be used to help SMC
- UNSAT Core are important and rich objects, useful for abstraction refinements
- Interpolation pushes the idea further (no more BDDs)
- Direct construction of inductive invariants can be useful too

Pointers to bibliography

- Kenneth L. McMillan: Interpolation and SAT-Based Model Checking. CAV 2003.
- Nina Amla, Xiaoqun Du, Andreas Kuehlmann, Robert P. Kurshan and Kenneth L. McMillan: An Analysis of SAT-based Model Checking Techniques in an Industrial Environment. CHARME05.
- Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan Zhu: Symbolic Model Checking without BDDs. TACAS 1999.
- Parosh Aziz Abdulla, Per Bjesse, Niklas Eén: Symbolic Reachability Analysis Based on SAT-Solvers. TACAS 2000.
- Laurent Doyen, Jean-François Raskin: Antichain Algorithms for Finite Automata. TACAS 2010.
- Handbook of Model-Checking. Springer. 2015.