
Using Constraint Programming to Reason
About Procedural Code

Kathryn Francis and Peter J. Stuckey

University of Melbourne
National ICT Australia

18th May, 2015

www.nicta.com.au From imagination to impact

Outline

1. Motivation
our purpose for reasoning about procedural code

2. Background
brief introduction to constraint programming (CP)

3. Standard approaches
explanation of how CP + SMT are typically applied to this
problem

4. Query-Based approach
a better CP encoding

5. (Bounded) Loops
Unwinding
Untangling

6. Global Constraint for Reaching Definitions
our current work

7. Conclusion
2/84

Outline

1. Motivation
our purpose for reasoning about procedural code

2. Background
brief introduction to constraint programming (CP)

3. Standard approaches
explanation of how CP + SMT are typically applied to this
problem

4. Query-Based approach
a better CP encoding

5. (Bounded) Loops
Unwinding
Untangling

6. Global Constraint for Reaching Definitions
our current work

7. Conclusion
3/84

Motivation

We have a goal to make it easier for programmers to
include optimisation functionality in their applications.

Using existing tools is difficult and time-consuming.
The programmer has to..

learn how constraint solvers work
discover available variable and
constraint types
figure out how to represent
high-level decisions (and their
consequences) using these
create a model using an unfamiliar
language or library methods
convert returned values back into a
usable representation of the solution

4/84

Motivation

Our goal is to allow optimisation problems to be defined natively
within a general purpose programming language.

The programmer writes code to
build a candidate solution from individual decisions
evaluate a candidate solution

The optimisation library provides a function buildOptimal
which takes the above two functions as arguments.

Calling buildOptimal is equivalent calling build using
decisions which will give the best return value for evaluate.

5/84

Motivation - Examples

Travelling Salesman

The programmer writes code (in the application programming
language) to:

Build a list data structure containing a (random)
permutation of the stops.
Compute the travel time for a given ordered list of stops.

The buildOptimal method can be used to obtain a list
containing the stops in optimal order (with minimal travel time).

6/84

Motivation - Examples

Bin Packing

The programmer writes code to
Build a set data structure containing a (random) subset of
the items.
Compute the total value of a set of items, returning a
special ‘invalid’ value if the total weight is too great.

The buildOptimal method can be used to obtain a set of
items with maximum value for the acceptable weight.

7/84

Motivation - Implementing the library

Requirements
Given the two functions written by the programmer, find inputs
for build which produce a candidate solution with maximum or
minimum return value for a subsequent call to evaluate.

We achieve this by
1. Translating the code into a constraint model defining the

relationship between the inputs and the evaluation result.
2. Using a constraint solver to find an optimal set of inputs.

This same translation could be used to discover other things
about the code.

What input values allow execution to reach this statement?

8/84

What we are not going to talk about

Unbounded loops
We consider the translation of code where loops are
bounded
Good enough for

simulation optimization (usually)
bounded model checking
congolic testing

Unbounded loops require: abstract interpretation,
interpolation, or perhaps lazy constraint addition!

9/84

Outline

1. Motivation
our purpose for reasoning about procedural code

2. Background
brief introduction to constraint programming (CP)

3. Standard approaches
explanation of how CP + SMT are typically applied to this
problem

4. Query-Based approach
a better CP encoding

5. (Bounded) Loops
Unwinding
Untangling

6. Global Constraint for Reaching Definitions
our current work

7. Conclusion
10/84

Background - Constraint Programming

Terminology
A model is a collection of variables and constraints.
A variable has a domain of possible values.
A constraint imposes rules about (dis)allowed
combinations of values for variables.
A solution is an assignment of values to variables
satisfying all constraints.
An optimal solution is a solution with minimum or
maximum value for the objective variable.
Constraints are enforced in the solver using propagators.
Their purpose is to make deductions about the allowed
values for each variable given the current domains of other
related variables. This is called propagation.

11/84

Background - Constraint Programming

Basic Solver Algorithm
void solve() {

if (some variable has an empty domain) {
return; // no solutions down here

}
if (all variables are fixed) {

report a solution;
add constraint obj > current obj;
return; // the added constraint has to cause an empty domain

}
while exists variable v which is not yet fixed {

for each value x in domain(v) {
set v = x;
run propagators; // this will reduce other domains
solve(); // recursive call
undo what the propagators did;

} } }

stronger propagation! smaller domains! less search
12/84

Background - Constraint Programming

element constraint
y = [a, b, c, d][x]

remove any index where the element cannot equal y
remove a value for y if no element at a possible index can
take that value
when x is fixed, the chosen element must equal y

sum constraint (linear)
s = a + b + c + d

rearrange for each variable: a = s � (b + c + d)

calculate possible values for rhs and use this to filter lhs

13/84

Background - Constraint Programming

global cardinality constraint
Card(vars, values, counts)

the number of times values[i] occurs in the array vars is
given by counts[i].
propagation based on matching algorithms
advantage of CP defining complex constraints

14/84

Outline

1. Motivation
our purpose for reasoning about procedural code

2. Background
brief introduction to constraint programming (CP)

3. Standard approaches
explanation of how CP + SMT are typically applied to this
problem

4. Query-Based approach
a better CP encoding

5. (Bounded) Loops
Unwinding
Untangling

6. Global Constraint for Reaching Definitions
our current work

7. Conclusion
15/84

Standard CP Approach

To reason about procedural code:

1. Build a model representing the relationship between inputs
and outputs.

2. Search for a solution to this model satisfying some further
constraints (in our case, maximizing return value for
evaluate).

Note that we do not necessarily search over execution
paths directly.
We may instead search over input values.
When these are all known so is the execution path.

16/84

Standard CP Approach

Building the model:

A path constraint tells whether each statement will be
executed.
Assignments result in a new version of the assigned
variable.
For field assignments a new version is created for every
possibly affected object.
The new value is constrained to be the assigned one if the
path constraint is satisfied, and the previous value
otherwise.

State is represented at each point

17/84

Standard CP Approach - Example

int makegroups(Group mygroup, Group yourgroup,
bool ibringfamily, bool youbringfamily) {

mygroup.size++;
yourgroup.size++;
if(ibringfamily)

mygroup.size += 4;
if(youbringfamily)

yourgroup.size += 2;
return mygroup.size;

}

Assume:
mygroup in {A, B}
yourgroup = A
both A and B have initial size 0

18/84

Standard CP Approach - Example

mygroup.size++;
yourgroup.size++;
if(ibringfamily)

mygroup.size += 4;
if(youbringfamily)

yourgroup.size += 2;

Assume:

mygroup in {A, B}

yourgroup = A

both A and B have
initial size 0

sA0= 0
sB0 = 0
sA1 = [sA0,sA0+1][mygr=A]
sB1 = [sB0,sB0+1][mygr=B]
sA2 = sA1+1
sA3 = [sA2,sA2+4][ibring ^ mygr=A]
sB2 = [sB1,sB1+4][ibring ^ mygr=B]
sA4 = [sA3,sA3+2][youbring]
returnval = [sB2,sA4][mygr=A]

We use element for if-then-else
to allow disjunctive reasoning.

19/84

Standard CP Approach - Problems

Aliasing causes weak propagation:
sA0= 0 {0}
sB0 = 0 {0}
sA1 = [sA0,sA0+1][mygr=A] {0, 1}
sB1 = [sB0,sB0+1][mygr=B] {0, 1}
sA2 = sA1+1 {1, 2}
sA3 = [sA2,sA2+4][ibring ^ mygr=A] {1, 2, 5, 6}
sB2 = [sB1,sB1+4][ibring ^ mygr=B] {0, 1, 4, 5}
sA4 = [sA3,sA3+2][youbring] {1, 2, 3, 4, 5, 6, 7, 8}
returnval = [sB2,sA4][mygr=A] {0, 1, 2, 3, 4, 5, 6, 7, 8}

We think returnval may be 0 (my group might be empty).

20/84

Standard SMT Approach

Building the model:

Use if-then-else (ITE) constructs to control which paths are
executed.
Represent field assignments using an array to carry the
field value for all objects.
Access field values using “read” (R) on the array
Update field values using “write” (W) on the array
Theory of arrays:

8a, i , j , x .i = j ! R(W(a, i , x), j) = x
i 6= j ! R(W(a, i , x), j) = R(a, j)

State is represented concisely at each point

21/84

Standard SMT Approach - Example

mygroup.size++;
yourgroup.size++;
if(ibringfamily)

mygroup.size += 4;
if(youbringfamily)

yourgroup.size += 2;

Assume:

mygroup in {A, B}

yourgroup = A

both A and B have
initial size 0

size0 = W(W(?,A,0),B,0)
size1 = W(size0, mygr, R(size0, mygr)+1)
size2 = W(size1, A, R(size1, A)+1)
size3 = ITE(ibring, W(size2, mygr,

R(size2, mygr)+4), size2)
size4 = ITE(youbring, W(size3, A,

R(size3, A) + 2), size3)
returnval = R(size4, mygr)

Concise but
no disjunctive reasoning using
theory of arrays

22/84

Outline

1. Motivation
our purpose for reasoning about procedural code

2. Background
brief introduction to constraint programming (CP)

3. Standard approaches
explanation of how CP + SMT are typically applied to this
problem

4. Query-Based approach
a better CP encoding

5. (Bounded) Loops
Unwinding
Untangling

6. Global Constraint for Reaching Definitions
our current work

7. Conclusion
23/84

Query-Based Approach

We realised:
We don’t need to know the state of every object at every
program point.
For correctness, we just need the variable references
(queries) to correspond correctly to the assignments.

So we developed a new approach:
Don’t create variables for the state at each program point.
Instead directly model the relationship between
assignments and variable references.
This supports aliasing without introducing an excessive
number of variables.
It also makes stronger propagation possible.

24/84

Query-Based Approach

First convert the code into an ordered list of assignments.

mygroup.size++;
yourgroup.size++;

if(ibringfamily)
mygroup.size += 4;

if(youbringfamily)
yourgroup.size += 2;

condition object field value

A . size = 0
B . size = 0

mygroup . size = mygroup.size+ 1
yourgroup . size = yourgroup.size+ 1

(ibringfamily) mygroup . size = mygroup.size + 4
(youbringfamily) yourgroup . size = yourgroup.size + 2

25/84

Query-Based Approach

Then identify queries (variable references) of interest.

Condition Object Field Assigned value
A . size = 0
B . size = 0

mygroup . size = mysize1+ 1
yourgroup . size = yoursize1+ 1

(ibringfamily) mygroup . size = mysize2 + 4
(youbringfamily) yourgroup . size = yoursize2 + 2

mysize1 = mygroup.size (after assignment 2)
yoursize1 = yourgroup.size (after assignment 3)

mysize2 = mygroup.size (after assignment 4)
yoursize2 = yourgroup.size (after assignment 5)
returnval = mygroup.size (after assignment 6)

26/84

Query-Based Approach

For each query of interest:

Define a solver variable representing which assignment
provides the value.
This is the assignment which both reaches and matches
the query.

Reaches:

Matches:

Is executed before the query and not over-
written by an intervening assignment.

Uses the queried object.

27/84

Query-Based Approach

field reference: queryobj.field

assignments: cond1 : obj1.field := expr1
...

condn : objn.field := exprn

+

constraints: queryresult = [expr1, ..., exprn][indexvar]
queryobj = [obj1, ..., objn][indexvar]

true = [cond1, ..., condn][indexvar]

(cond2 ^ queryobj = obj2)! indexvar � 2
...

(condn ^ queryobj = objn)! indexvar � n

28/84

Query-Based Approach - Example

Condition Object Field Assigned value
A . size = 0
B . size = 0

mygroup . size = mysize1+ 1
yourgroup . size = yoursize1+ 1

(ibringfamily) mygroup . size = mysize2 + 4
(youbringfamily) yourgroup . size = yoursize2 + 2

mysize1 = mygroup.size (after assignment 2)
yoursize1 = yourgroup.size (after assignment 3)

mysize2 = mygroup.size (after assignment 4)
yoursize2 = yourgroup.size (after assignment 5)
returnval = mygroup.size (after assignment 6)

29/84

Query-Based Approach - Example

Condition Object Field Assigned value
A . size = 0
B . size = 0

mygroup . size = mysize1+ 1
yourgroup . size = yoursize1+ 1

(ibringfamily) mygroup . size = mysize2 + 4
(youbringfamily) yourgroup . size = yoursize2 + 2

mysize

1

= mygroup.size (after assignment 2)

yoursize1 = yourgroup.size (after assignment 3)
mysize2 = mygroup.size (after assignment 4)

yoursize2 = yourgroup.size (after assignment 5)
returnval = mygroup.size (after assignment 6)

mysize1 = 0

30/84

Query-Based Approach - Example

Condition Object Field Assigned value
A . size = 0
B . size = 0

mygroup . size = mysize1+ 1
yourgroup . size = yoursize1+ 1

(ibringfamily) mygroup . size = mysize2 + 4
(youbringfamily) yourgroup . size = yoursize2 + 2

mysize1 = 0
yoursize

1

= yourgroup.size (after assignment 3)

mysize2 = mygroup.size (after assignment 4)
yoursize2 = yourgroup.size (after assignment 5)
returnval = mygroup.size (after assignment 6)

var 1..3 : index1
yoursize1 = [0, 0, mysize1 + 1][index1]
yourgroup = [A, B, mygroup][index1]
true = [true, true, true][index1]

31/84

Query-Based Approach - Example

Condition Object Field Assigned value
A . size = 0
B . size = 0

mygroup . size = mysize1+ 1
yourgroup . size = yoursize1+ 1

(ibringfamily) mygroup . size = mysize2 + 4
(youbringfamily) yourgroup . size = yoursize2 + 2

mysize1 = 0
yoursize

1

= yourgroup.size (after assignment 3)

mysize2 = mygroup.size (after assignment 4)
yoursize2 = yourgroup.size (after assignment 5)
returnval = mygroup.size (after assignment 6)

var 1..2 : index1
yoursize1 = [0, 1][index1]
yourgroup = [A, mygroup][index1]
(yourgroup = mygroup)! index1 >= 2

32/84

Query-Based Approach - Example

Condition Object Field Assigned value
A . size = 0
B . size = 0

mygroup . size = mysize1+ 1
yourgroup . size = yoursize1+ 1

(ibringfamily) mygroup . size = mysize2 + 4
(youbringfamily) yourgroup . size = yoursize2 + 2

mysize1 = 0
yoursize

1

= yourgroup.size (after assignment 3)

mysize2 = mygroup.size (after assignment 4)
yoursize2 = yourgroup.size (after assignment 5)
returnval = mygroup.size (after assignment 6)

yoursize1 = [0, 1][yourgroup = mygroup]

33/84

Query-Based Approach - Example

Condition Object Field Assigned value
A . size = 0
B . size = 0

mygroup . size = mysize1+ 1
yourgroup . size = yoursize1+ 1

(ibringfamily) mygroup . size = mysize2 + 4
(youbringfamily) yourgroup . size = yoursize2 + 2

mysize1 = 0
yoursize1 = [0, 1][yourgroup = mygroup]
mysize

2

= mygroup.size (after assignment 4)

yoursize2 = yourgroup.size (after assignment 5)
returnval = mygroup.size (after assignment 6)

mysize2 = [0, 0, mysize1 + 1, yoursize1 + 1][index1]
mygroup = [A, B, mygroup, yourgroup][index1]
(mygroup = B)! index1 >= 2
(mygroup = mygroup)! index1 >= 3
(mygroup = yourgroup)! index1 >= 4

34/84

Query-Based Approach - Example

Condition Object Field Assigned value
A . size = 0
B . size = 0

mygroup . size = mysize1+ 1
yourgroup . size = yoursize1+ 1

(ibringfamily) mygroup . size = mysize2 + 4
(youbringfamily) yourgroup . size = yoursize2 + 2

mysize1 = 0
yoursize1 = [0, 1][yourgroup = mygroup]
mysize

2

= mygroup.size (after assignment 4)

yoursize2 = yourgroup.size (after assignment 5)
returnval = mygroup.size (after assignment 6)

mysize2 = [mysize1 + 1, yoursize1 + 1][mygroup = yourgroup]

35/84

Query-Based Approach - Example

Condition Object Field Assigned value
A . size = 0
B . size = 0

mygroup . size = mysize1+ 1
yourgroup . size = yoursize1+ 1

(ibringfamily) mygroup . size = mysize2 + 4
(youbringfamily) yourgroup . size = yoursize2 + 2

mysize1 = 0
yoursize1 = [0, 1][yourgroup = mygroup]

mysize2 = [1, yoursize1 + 1][mygroup = yourgroup]
yoursize

2

= yourgroup.size (after assignment 5)

returnval = mygroup.size (after assignment 6)

yoursize2 = [yoursize1 + 1, mysize2 + 4][ygroup = mgroup ^ ibring]

36/84

Query-Based Approach - Example

A . size = 0
B . size = 0

mygroup . size = mysize1+ 1
yourgroup . size = yoursize1+ 1

(ibringfamily) mygroup . size = mysize2 + 4
(youbringfamily) yourgroup . size = yoursize2 + 2

mysize1 = 0
yoursize1 = [0, 1][yourgroup = mygroup]

mysize2 = [1, yoursize1 + 1][mygroup = yourgroup]
yoursize2 = [yoursize1 + 1, mysize2 + 4][ygroup = mgroup ^ ibring]

returnval = mygroup.size (after assignment 6)

returnval = [mysize1 + 1, yoursize1 + 1, mysize2 + 4, yoursize2 + 2][index1]
mygroup = [mygroup, yourgroup, mygroup, yourgroup][index1]
true = [true, true, ibring, youbring][index1]
(yourgroup = mygroup) ! index1 � 2
(mygroup = mygroup ^ ibringfamily) ! index1 � 3
(yourgroup = mygroup ^ youbringfamily) ! index1 � 4

37/84

Query-Based Approach - Example

This is our new model:

mysize1 = 0 {0}
yoursize1 = [0, 1][yourgroup = mygroup] {0,1}

mysize2 = [1, yoursize1+1][mygroup = yourgroup] {1,2}
yoursize2 = [yoursize1+1,mysize2+4][ygroup = mgroup ^ ibring] {1,2,5,6}
returnval = [1, yoursize1+1,mysize2+4, yoursize2+2][index1] {1..8}

mygroup = [mygroup, yourgroup, mygroup, yourgroup][index1]
true = [true, true, ibring, youbring][index1]

(yourgroup = mygroup) ! index1 � 2
(mygroup = mygroup ^ ibringfamily) ! index1 � 3
(yourgroup = mygroup ^ youbringfamily) ! index1 � 4

Now we know returnval is not 0 (my group is not empty).

38/84

Query-Based Approach - Problem

This is better, but we are still missing propagation.
Imagine we know returnval < 5.
We should deduce that ibringfamily is false.
With these constraints we cannot do that even if we also
know mygroup = yourgroup.

mysize1 = 0 {0}
yoursize1 = [0, 1][yourgroup = mygroup] {0,1}

mysize2 = [1, yoursize1+1][mygroup = yourgroup] {1,2}
yoursize2 = [yoursize1+1,mysize2+4][ygroup = mgroup ^ ibring] {1,2,5,6}
returnval = [1, yoursize1+1,mysize2+4, yoursize2+2][index1] {1..4}

mygroup = [mygroup, yourgroup, mygroup, yourgroup][index1]
true = [true, true, ibring, youbring][index1]

(yourgroup = mygroup)! index1 � 2
(mygroup = mygroup ^ ibringfamily)! index1 � 3
(yourgroup = mygroup ^ youbringfamily)! index1 � 4

39/84

Query-Based Approach - Special Cases

To combat this we looked for easily detected special cases
where a better translation could be applied.

The sum special case
A . size = 0
B . size = 0

mygroup . size = mysize1+ 1
yourgroup . size = yoursize1+ 1

(ibringfamily) mygroup . size = mysize2 + 4
(youbringfamily) yourgroup . size = yoursize2 + 2

returnval = mygroup.size (after assignment 6)

returnval = 0 ⇥ (mygroup = A) + 0 ⇥ (mygroup = B) +
1 ⇥ (mygroup = mygroup) + 1 ⇥ (yourgroup = mygroup) +
4 ⇥ (mygroup = mygroup ^ ibringfamily) +
2 ⇥ (mygroup = yourgroup ^ youbringfamily)

40/84

Query-Based Approach - Special Cases

To combat this we looked for easily detected special cases
where a better translation could be applied.

The sum special case
A . size = 0
B . size = 0

mygroup . size = mysize1+ 1
yourgroup . size = yoursize1+ 1

(ibringfamily) mygroup . size = mysize2 + 4
(youbringfamily) yourgroup . size = yoursize2 + 2

returnval = mygroup.size (after assignment 6)

returnval = 1 + 1 ⇥ (yourgroup = mygroup) + 4 ⇥ (ibringfamily) +
2 ⇥ (mygroup = yourgroup ^ youbringfamily)

41/84

Query-Based Approach - Special Cases

This does improve propagation:
again imagine we know returnval < 5
we can now deduce that ibringfamily must be false

returnval = 1 + 1⇥ (yourgroup = mygroup) + 4⇥ (ibringfamily) +
2⇥ (mygroup = yourgroup ^ youbringfamily)

4⇥ ibringfamily = returnval � (1 + 1⇥ (yourgroup = mygroup) +
2⇥ (mygroup = yourgroup ^ youbringfamily))

4⇥ ibringfamily  4� (1 + 1⇥ (0) + 2⇥ (0))
4⇥ ibringfamily  3

ibringfamily = 0

However this only helps for the specific cases we detect.

42/84

Query-Based Approach

Improved propagation at what cost:
State is size n
Program trace length is m

Standard CP Encoding is O(mn)

SMT Encoding is O(m)

Query CP Encoding is O(m2)

We may need to make explicit all state at a program point.
There can be no relevant assignments earlier than that point.

43/84

Outline

1. Motivation
our purpose for reasoning about procedural code

2. Background
brief introduction to constraint programming (CP)

3. Standard approaches
explanation of how CP + SMT are typically applied to this
problem

4. Query-Based approach
a better CP encoding

5. (Bounded) Loops
Unwinding
Untangling

6. Global Constraint for Reaching Definitions
our current work

7. Conclusion
44/84

Loop Unwinding

Usually, bounded loops are ‘unwound’.

This is performed as a pre-processing step before the
translation to constraints.

for(slice : slices) {
PizzaType pt = slice.pizzatype;
pt.numslices++;

}
return veg.numSlices;

pt1 = slice1.pizzatype;
pt1.numslices++;

pt2 = slice2.pizzatype;
pt2.numslices++;

pt3 = slice3.pizzatype;
pt3.numslices++;

return veg.numslices;

A list of ordered copies of each loop body

45/84

Loop Unwinding Translation Example

The final query is constrained like this.

pt1 = slice1.pizzatype;
pt1.numslices++;

pt2 = slice2.pizzatype;
pt2.numslices++;

pt3 = slice3.pizzatype;
pt3.numslices++;

return veg.numslices;

var 1..4: i;

// assignment i provides value
retval = [0,q1+1,q2+1,q3+1][i];

// assignment i matches
[veg,pt1,pt2,pt3][i] = veg;

// assignment i reaches
[true,true,true,true][i] = true;
pt1 = veg! i � 2
pt2 = veg! i � 3
pt3 = veg! i � 4

Queries q1, q2 and q3 all need their own constraints.

46/84

Loop Unwinding Translation Example Revised

Representing reaches differently

pt1 = slice1.pizzatype;
pt1.numslices++;

pt2 = slice2.pizzatype;
pt2.numslices++;

pt3 = slice3.pizzatype;
pt3.numslices++;

return veg.numslices;

var 1..4: i;

// assignment i provides value
retval = [0,q1+1,q2+1,q3+1][i];

// assignment i matches
[veg,pt1,pt2,pt3][i] = veg;

// assignment i reaches
[r0,r1,r2,r3][i] = true;
r0 = (pt1 6=veg ^ pt26=veg ^ pt36=veg)
r1 = (pt2 6=pt1 ^ pt36=pt1)
r2 = (pt3 6=pt2)
r3 = true

Make untangling easier to explain

47/84

Loop Unwinding

The translation we just saw has some problems.

Each iteration contains a lot of uncertainty.
We have to look up numslices for an unknown object.
We have to update numslices for an unknown object.
For the final result all that matters is the number of
vegetarian slices (we don’t care about q1, q2 and q3).

By untangling the loop instead of unwinding it we can
address these problems.

48/84

Loop Untangling

Untangling: trade uncertainty in objects for uncertainty in
order.

Create and label copies of the loop body based on the possible
values of a key query, called the label query.

Create a copy of the loop body for each value which may be
taken by the label query. If the same value may occur more
than once, create a copy for the first, second, third (etc.) time
this value is taken.

There are more copies of the loop body.
We don’t know which are executed in what order.
But the constraints for each copy can be much simpler.

49/84

The Example Untangled

First we need to choose a label query.

for(slice : slices) {
PizzaType pt = slice.pizzatype; label query
pt.numslices++;

}
return veg.numSlices;

Then we find its possible values in each iteration.

Assuming:

slice1.pizzatype 2 {Veg, Marg}
slice2.pizzatype 2 {Veg, Marg}
slice3.pizzatype 2 {Veg, Cap}

Our label query can be:

Veg 0-3 times
Marg 0-2 times
Cap 0-1 times

50/84

The Example Untangled

Now create a copy of the body for each potential value.

1st Veg:

2nd Veg:

3rd Veg:

pt = veg;
pt.numslices++;

pt = veg;
pt.numslices++;

pt = veg;
pt.numslices++;

return veg.numslices;

1st Marg:

2nd Marg:

1st Cap:

pt = marg;
pt.numslices++;

pt = marg;
pt.numslices++;

pt = cap;
pt.numslices++;

We don’t know which iterations happen in which order.
For those with the same label value we enforce an order.

51/84

The Example Untangled

Now create a copy of the body for each potential value.

1st Veg:

2nd Veg:

3rd Veg:

veg.numslices++;

veg.numslices++;

veg.numslices++;

return veg.numslices;

1st Marg:

2nd Marg:

1st Cap:

marg.numslices++;

marg.numslices++;

cap.numslices++;

We don’t know which iterations happen in which order.
For those with the same label value we enforce an order.

51/84

The Example Untangled

Translate using the query-based technique

1st Veg:

2nd Veg:

3rd Veg:

veg.numslices++;

veg.numslices++;

veg.numslices++;

return veg.numslices;

1st Marg:

2nd Marg:

1st Cap:

marg.numslices++;

marg.numslices++;

cap.numslices++;

var 1..7: i;

// assignment i provides value
retval = [0,q1+1,q2+1,q3+1,q4+1,q5+1,q6+1][i];

// assignment i matches
[veg,veg,veg,veg,marg,marg,cap][i] = veg;

// assignment i reaches
[r0,r1,r2,r3,r4,r5,r6][i] = true;

52/84

The Example Untangled

Translate using the query-based technique

1st Veg:

2nd Veg:

3rd Veg:

veg.numslices++;

veg.numslices++;

veg.numslices++;

return veg.numslices;

1st Marg:

2nd Marg:

1st Cap:

marg.numslices++;

marg.numslices++;

cap.numslices++;

var 1..4: i;

// assignment i provides value
retval = [0,q1+1,q2+1,q3+1][i];

// assignment i matches
[veg,veg,veg,veg][i] = veg;

// assignment i reaches
[r0,r1,r2,r3][i] = true;

52/84

The Example Untangled

Translate using the query-based technique

1st Veg:

2nd Veg:

3rd Veg:

veg.numslices++;

veg.numslices++;

veg.numslices++;

return veg.numslices;

1st Marg:

2nd Marg:

1st Cap:

marg.numslices++;

marg.numslices++;

cap.numslices++;

var 1..4: i;

// assignment i provides value
retval = [0,q1+1,q2+1,q3+1][i];

// assignment i reaches
[r0,r1,r2,r3][i] = true;

52/84

The Example Untangled

Translate using the query-based technique

1st Veg:

2nd Veg:

3rd Veg:

veg.numslices++;

veg.numslices++;

veg.numslices++;

return veg.numslices;

1st Marg:

2nd Marg:

1st Cap:

marg.numslices++;

marg.numslices++;

cap.numslices++;

var 1..4: i;

// assignment i provides value
retval = [0,q1+1,q2+1,q3+1][i];

// assignment i reaches
[r0,r1,r2,r3][i] = true;

Constraints for q1

var 1..4: j;

// assignment j provides value
q1 = [0,q1+1,q2+1,q3+1][j];

// assignment j matches
// assignment j reaches

53/84

The Example Untangled

Translate using the query-based technique

1st Veg:

2nd Veg:

3rd Veg:

veg.numslices++;

veg.numslices++;

veg.numslices++;

return veg.numslices;

1st Marg:

2nd Marg:

1st Cap:

marg.numslices++;

marg.numslices++;

cap.numslices++;

var 1..4: i;

// assignment i provides value
retval = [0,q1+1,q2+1,q3+1][i];

// assignment i reaches
[r0,r1,r2,r3][i] = true;

Constraints for q1

q1 = 0;

53/84

The Example Untangled

Translate using the query-based technique

1st Veg:

2nd Veg:

3rd Veg:

veg.numslices = 0+1;

veg.numslices++;

veg.numslices++;

return veg.numslices;

1st Marg:

2nd Marg:

1st Cap:

marg.numslices++;

marg.numslices++;

cap.numslices++;

var 1..4: i;

// assignment i provides value
retval = [0, 0+1,q2+1,q3+1][i];

// assignment i reaches
[r0,r1,r2,r3][i] = true;

Constraints for q1

q1 = 0;

53/84

The Example Untangled

Translate using the query-based technique

1st Veg:

2nd Veg:

3rd Veg:

veg.numslices = 1;

veg.numslices = 2;

veg.numslices = 3;

return veg.numslices;

1st Marg:

2nd Marg:

1st Cap:

marg.numslices = 1;

marg.numslices = 2;

cap.numslices = 1;

var 1..4: i;

// assignment i provides value
retval = [0,1,2,3][i];

// assignment i reaches
[r0,r1,r2,r3][i] = true;

54/84

Comparison: unwound vs. untangled

var 1..4: i;

// assignment i provides value
retval = [0,q1+1,q2+1,q3+1][i];

// assignment i matches
[veg,pt1,pt2,pt3][i] = veg;

// assignment i reaches
[r0,r1,r2,r3][i] = true;

var 1..4: i;

// assignment i provides value
retval = [0,1,2,3][i];

// assignment i reaches
[r0,r1,r2,r3][i] = true;

The untangled version is much simpler!

We know exactly which assignments match.
We don’t need q1, q2 and q3.

But we need a new way of defining reaches.

55/84

Redefining reaches

An assignment reaches a query if it happens before the query
and no other matching assignment happens between them.

When loops are unwound
Some assignments may be skipped, but the relative order
of any pair is known.
So happens before and happens between can be defined
just using happens.

When loops are untangled
The relative order is no longer known.
We also need to properly constrain which untangled
iterations happen.

56/84

Current solution

Still unwind parts of the body used to define the label query.
L1 = slice1.pizzatype L2 = slice2.pizzatype L3 = slice3.pizzatype

Link each untangled iteration to an unwound one.
doesn’t happen 1st 2nd 3rd

UnwoundForVeg1 2 { 0 1 2 3 }
UnwoundForVeg2 2 { 0 1 2 3 }
UnwoundForVeg3 2 { 0 1 2 3 }
UnwoundForMarg1 2 { 0 1 2 3 }
UnwoundForMarg2 2 { 0 1 2 3 }
UnwoundForCap1 2 { 0 1 2 3 }

Use this link to define happens and before.
Veg1Happens = (UnwoundForVeg1 > 0)
Veg1BeforeVeg2 = Veg1Happens ^ (UnwoundForVeg1 < UnwoundForVeg2)

57/84

Current solution

Add constraints to ensure the correct iterations happen.
Veg2Happens! Veg1BeforeVeg2

[veg, L1, L2, L3][UnwoundForVeg1] = veg

Card([UnwoundForVeg1, UnwoundForVeg2, UnwoundForVeg3,
UnwoundForMarg1, UnwoundForMarg2, UnwoundForCap1],
[0, 1, 2, 3], [3, 1, 1, 1])

Then if L1 2 {Veg, Marg}, L2 2 {Veg, Marg}, L3 2 {Veg, Cap}:
doesn’t happen 1st 2nd 3rd

UnwoundForVeg1 2 { 0 1 2 3 }
UnwoundForVeg2 2 { 0 2 3 }
UnwoundForVeg3 2 { 0 3 }
UnwoundForMarg1 2 { 0 1 2 }
UnwoundForMarg2 2 { 0 2 }
UnwoundForCap1 2 { 0 3 }

58/84

Back to the example

For our example reaches can be defined using happens.

var 1..4: i;

// assignment i provides value
retval = [0,1,2,3][i];

// assignment i reaches
[r0,r1,r2,r3][i] = true;

r0 = ¬Veg1Happens
r1 = Veg1Happens ^ ¬Veg2Happens
r2 = Veg2Happens ^ ¬Veg3Happens
r3 = Veg3Happens

1st Veg:

2nd Veg:

3rd Veg:

veg.numslices = 1;

veg.numslices = 2;

veg.numslices = 3;

return veg.numslices;

59/84

Summary

General loop untangling process:

Choose a label query.
Create copies based on that.
Use the same constraints..
..but with new reaches expressions.
Unwind everything underneath and link together.

60/84

Outline

1. Motivation
our purpose for reasoning about procedural code

2. Background
brief introduction to constraint programming (CP)

3. Standard approaches
explanation of how CP + SMT are typically applied to this
problem

4. Query-Based approach
a better CP encoding

5. (Bounded) Loops
Unwinding
Untangling

6. Global Constraint for Reaching Definitions
our current work

7. Conclusion
61/84

Global Constraint for Reaching Definitions

Current work: replace reaches constraints with a global

field reference: queryobj.field

assignments: cond1 : obj1.field := expr1...
condn : objn.field := exprn

+

constraints: queryresult = [expr1, ..., exprn][indexvar]
queryobj = [obj1, ..., objn][indexvar]

true = [reachs1, ..., reachsn][indexvar]
reachs1 = (cond1 ^ (cond2 ! obj1 6= obj2) · · ·)

...
reachsn�1 = (condn�1 ^ (condn ! objn�1 6= objn)

reachsn = condn

62/84

Global Constraint for Reaching Definitions

The propagator for the new global constraint will..
Remove from indexvar the index of changes which cannot
reach the query.
Make deductions about statements which must or must not
be reached by execution.
Achieve some propagation provided by the sum constraint.

To do this several different algorithms are used.
Represent possible execution paths with an explicit graph.
Existing path propagation algorithms keep this consistent.
Specialised algorithm uses condensed version of graph to
compute which assignments may reach which queries.
Another algorithm combines the information from both of
these to detect nodes which must or must not happen.

63/84

Execution Graph - Example

mygroup.size++;
yourgroup.size++;
if(ibringfamily)

mygroup.size += 4;
if(youbringfamily)

yourgroup.size += 2;

The path propagator keeps
this graph consistent with the
values of ibringfamily and
youbringfamily . 64/84

Condensed Graph - Example

mygroup.size++;
yourgroup.size++;
if(ibringfamily)

mygroup.size += 4;
if(youbringfamily)

yourgroup.size += 2;

We create a condensed
graph for each variable/field.

This has an edge a � b if
there is a path from a to
b without going through an-
other relevant node.

65/84

Reaching Definitions Algorithm

Goal:
Find changes which cannot reach the query because they
will be overwritten.

66/84

Reaching Definitions Algorithm

Goal:
Find changes which cannot reach the query because they
will be overwritten.

If C1 matches C2 and C3, then C1
cannot reach Q1.

67/84

Reaching Definitions Algorithm

Goal:
Find changes which cannot reach the query because they
will be overwritten.

If C1 matches C2 and C3, then C1
cannot reach Q1.
Also, if C1 matches C2 and Q1
matches C3, then C1 does not
reach Q1.

68/84

Reaching Definitions Algorithm

Divide nodes into match classes (groups of definitely
matching nodes).
For each node store which changes reach there for which
match classes.

Update iteratively:
C reaches here for class m if

this node is C
or

C reaches at least one
predecessor for m
this is not a change in the
same class as C or a
change of class m

69/84

Reaching Definitions Algorithm - Problem

This algorithm is effective, but too strict.
If a query is not on the execution path, then it will not be
reached by any change.
This means the index variable has no possible value.
In a CP solver this automatically causes failure (stop
searching here and backtrack).

The solution is to use option types.
We declare the index variable to be an optional int.
This means it is allowed to take a special value >.
We constrain it to only do so if the query does not happen.
Option types can be automatically converted to normal
variables, but this weakens propagation, so we have
implemented native handling of these in the solver.

70/84

Detecting Impossible Nodes

By combining path and reaching definitions information..
We can reduce the domains of assigned values.
We can detect nodes which must not happen.

If every path forward from a change encounters a
matching query before an overwriting change, then

Those query results give the possible assigned values.
If this leaves no possible assigned value, then the change
does not happen.

We look for easy-to-find cases: when all immediate
successors in the condensed graph are matching queries.

71/84

Detecting Impossible Nodes - Example

Imagine as before that we
know mysize3 < 5 and
mygroup = yourgroup.

The only edge forward
from the last change goes
to the final query, which
matches because
mygroup = yourgroup.

72/84

Detecting Impossible Nodes - Example

Imagine as before that we
know mysize3 < 5 and
mygroup = yourgroup.

The only edge forward
from the last change goes
to the final query, which
matches because
mygroup = yourgroup.
So yoursize2 + 2 must
take a value in {1, 2, 3, 4}.
Therefore yoursize2
cannot be 5 or 6.

73/84

Detecting Impossible Nodes - Example

Both edges forward from
the previous change also
lead to matching queries.
So mysize2 + 4 must be
in {1, 2} [{1, 2, 3, 4}.
But mysize2 2 {1, 2}.
Since there is no possible
assigned value, this
change cannot happen.
The path propagator will
conclude that ibringfamily
must be false.

74/84

Detecting Required Nodes

By combining path and reaching definitions information..
We can discover new dominance relationships.
We can use these to detect when nodes must happen.

If some change dominates all other possibly reaching
changes for a query, then

The change dominates the query.
If the query must happen, the change also must happen.

75/84

Detecting Required Nodes - Example

Imagine this time that we
know returnval � 5 and
mygroup = yourgroup.

As before we can reduce
the domain of yoursize2.

76/84

Detecting Required Nodes - Example

Imagine this time that we
know returnval � 5 and
mygroup = yourgroup.

As before we can reduce
the domain of yoursize2.
Then, we see that
yoursize2 can only be
reached by change C1.
Therefore C1 dominates
yoursize2.

77/84

Detecting Required Nodes - Example

The final query can only
be reached by C1 or C2.
C1 dominates yoursize2
and therefore C2.
Since C1 dominates all
possible reaching
changes for mysize3, it
must dominate mysize3.
mysize3 must happen,
so C1 must happen.
The path propagator will
conclude that
ibringfamily must be true.

This is another example of
propagation provided by sum.

78/84

Reaching-Definitions Global and Untangling

Global constraint reasons about “dominance” directly!
Untangling generates dominances
Untangling propagation is improved by dominances

Tangle Graph: execution paths

M1 ��

��

��

��

��

��

��

��

��

��

M2

��

��

��

��

��

��

��

��

��
start

��

��

��

V 1
��

��

���� V 2 ��
��

��

��V 3 ����

��

end

C1

��

M1 �� M2

start

��

��

��

��V 1 �� V 2 �� V 3 end

C1

Fig. 5: Path control graphs: (a) lines 5-12 of Figure 1, (b) lines 10-14 of Figure 3.

executed immediately before s. Clearly for most steps this is simply the unique
predecessor. The prev array can be constrained by a subpath constraint [?].

Not all paths through the graph represent valid execution paths. The use
of certain edges (where execution branches) is conditional on the result of a
Boolean state query referred to in that step. The edge leading into a then or
else block can only be used if the if condition is true or false respectively. An
edge leading into a loop body is only valid if a query for the loop entry condition
returns true. In Figure 4 the query used to control the use of edges is shown in
brackets next to the source node. For loops (both start loop and end loop body
control points) if the query shown is false then the edge to the end loop control
point must be used.

Figure 5(a) shows a portion of the execution graph for our routing example
with basic blocks collapsed. The start can reach each loop iteration for stop =
A, B or C, and these can each reach each other and the end of the loop. As an
example of the conditions on edges, consider the edges leaving step p3a. Setting
prev[p4] = p3a requires q9a = false, as this edge represents exiting the loop,
while prev[p2b] = p3a (or prev[p2c] = p3a) requires that q9a = true, as these
edges represent re-entering the loop.

For the pizza example (Figure 5(b)), edges which can be discounted upfront
due to false edge conditions or constraints on the label query are not shown.
Since Ant runs first it can reach only the first instance of Veg or Cap, and each
of these can reach its end since Ant only picks one slice. For Bee the start can
reach the first Mar or the first or second Veg. Each of these nodes can reach only
the next of the same category or any of the other category, and the end of Bee’s
loop. Outside this part of the graph is a mandatory path from the end of Ant’s
loop to the start of Bee’s.

10

79/84

Reaching-Definitions Global and Untangling

Global constraint reasons about “dominance” directly!
Untangling generates dominances
Untangling propagation is improved by dominances

Dominance Graph: (transitively reduced) dominance

M1 ��

��

��

��

��

��

��

��

��

��

M2

��

��

��

��

��

��

��

��

��
start

��

��

��

V 1
��

��

���� V 2 ��
��

��

��V 3 ����

��

end

C1

��

M1 �� M2

start

��

��

��

��V 1 �� V 2 �� V 3 end

C1

Fig. 5: Path control graphs: (a) lines 5-12 of Figure 1, (b) lines 10-14 of Figure 3.

executed immediately before s. Clearly for most steps this is simply the unique
predecessor. The prev array can be constrained by a subpath constraint [?].

Not all paths through the graph represent valid execution paths. The use
of certain edges (where execution branches) is conditional on the result of a
Boolean state query referred to in that step. The edge leading into a then or
else block can only be used if the if condition is true or false respectively. An
edge leading into a loop body is only valid if a query for the loop entry condition
returns true. In Figure 4 the query used to control the use of edges is shown in
brackets next to the source node. For loops (both start loop and end loop body
control points) if the query shown is false then the edge to the end loop control
point must be used.

Figure 5(a) shows a portion of the execution graph for our routing example
with basic blocks collapsed. The start can reach each loop iteration for stop =
A, B or C, and these can each reach each other and the end of the loop. As an
example of the conditions on edges, consider the edges leaving step p3a. Setting
prev[p4] = p3a requires q9a = false, as this edge represents exiting the loop,
while prev[p2b] = p3a (or prev[p2c] = p3a) requires that q9a = true, as these
edges represent re-entering the loop.

For the pizza example (Figure 5(b)), edges which can be discounted upfront
due to false edge conditions or constraints on the label query are not shown.
Since Ant runs first it can reach only the first instance of Veg or Cap, and each
of these can reach its end since Ant only picks one slice. For Bee the start can
reach the first Mar or the first or second Veg. Each of these nodes can reach only
the next of the same category or any of the other category, and the end of Bee’s
loop. Outside this part of the graph is a mandatory path from the end of Ant’s
loop to the start of Bee’s.

10

80/84

Outline

1. Motivation
our purpose for reasoning about procedural code

2. Background
brief introduction to constraint programming (CP)

3. Standard approaches
explanation of how CP + SMT are typically applied to this
problem

4. Query-Based approach
a better CP encoding

5. (Bounded) Loops
Unwinding
Untangling

6. Global Constraint for Reaching Definitions
our current work

7. Conclusion
81/84

Summary

Experimental results have shown that (for our problems):
Query-based CP� Standard CP > SMT
Special cases (e.g. sum) mean some benchmarks achieve
propagation as strong as a hand written model.

Global reaching-definitions constraint
produces strong propagation of special cases
in a general way
although it does not cover all cases.

We have not done time comparisons for the global
constraint yet (it’s work-in-progress).

82/84

Further Work

Efficiency and Trade-offs
Stronger propagation does not always lead to better overall
performance.
We need to optimise our implementation and investigate
how much propagation strength pays off in our case.

Equality Propagation
When there is a single reaching change we have deduced
an equality between two variables.
We also use equality information to detect matchingness.
Currently we can only detect that two variables are equal if
they are identical or fixed to the same value.
We would like to improve on this by implementing a
union-find based equality propagator.

83/84

Questions?

For more details:
Optimisation modelling for software developers.
K. Francis, S. Brand, and P. J. Stuckey. CP 2012.

Modelling destructive assignments.
K. Francis, J. Navas, and P. J. Stuckey. CP 2013.

Modelling with Option Types in MiniZinc. C. Mears, A. Schutt, P. J.
Stuckey, G. Tack, K. Marriott, M. Wallace. CP-AI-OR 2014.

Explaining Circuit Propagation. K. Francis and P. J. Stuckey.
Constraints, Jan 2014.

Loop untangling. K. Francis and P. J. Stuckey. CP 2014.

Nothing published about reaching definitions propagator yet so you’ll
have to talk to me!

84/84

