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@ Introduction
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© Bringing Al ideas to CP

© Bringing CP ideas to Al
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@ [terations

6 Analyzing Sound Processes with Constraints
6 Conclusion

NB: in the following, Al means Abstract Interpretation.
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Zoom on: Ariane 5, Flight 501

Maiden flight of the Ariane 5 Launcher, 4 June 1996.
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Zoom on: Ariane 5, Flight 501

40s after launch. ..
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A
Zoom on: Ariane 5, Flight 501

Cause: software error!

@ arithmetic overflow in unprotected data conversion from 64-bit
float to 16-bit integer types?

P_M DERIVE (T_ALG.E_BH) :=
UC_16S_EN_16NS (TDB.T_ENTIER_16S
((1.0/C_M_LSB_BH) * G_M_INFO_DERIVE (T_ALG.E_BH)));

@ software exception not caught
= computer switched off

@ all backup computers run the same software
— all computers switched off, no guidance
— rocket self-destructs

Truchet-Miné Al and CP CPAIOR 2015
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Introduction Al

Abstract interpretation

JIESH

Université Scientifique et Médicale de Grenoble
Institut National Polytechnique de Grenoble

General theory of the approximation and comparison
of program semantics:

@ unifies many existing semantics

@ allows the definition of new static analyses that are correct by
construction
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Introduction

Concrete and abstract semantics

(So)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do
(S4)
I =1+ 2;
(Ss)
(Se)
program
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A
Concrete and abstract semantics

(So)

assume X in [0,1000]; SieD=P{1,x} = 7Z)

(S1) So={(i,x)|i,xeZ} =T

I := 0; S1={(i,X)ESo|X€[0,1000]} =F1(80)

(82) 82 = {(O,X) | ﬂi, (i,X) c 81 } = F2(S1)

while (S3) I < X do S5 =8, USs
(84) S4Z{(i,X)653|i<X} :F4(33)
I =1+ 2; Ss={(+2,x)[(i,x)€Ss}  =Fs(S4)
(85) 35:{(i,X)ES3| IZX} :F6(83)

(Ss)

program semantics

Concrete semantics S; € D = P({1,x} — Z):
@ strongest invariant (and an inductive invariant)
@ not computable in general
@ smallest solution of a system of equations
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Introduction Al

Concrete and abstract semantics

(So) T

assume X in [0,1000]; Si €D

(S1) Sp=Tt!

T 8 = F(Sy)

(&) 5= Fis)

while (S3) I < X do S§ — Sé Ut S§
(S4) St — Fﬁ(sﬁ)
I pap— I + 2 - 4 4 3
(S ) ’ St = Fi(S})

5
(Se) Se = FE(S3)
program semantics

Abstract semantics S¢ € D'

@ D' is a subset of properties of interest (approximation)
with a machine representation
e F*: D! - D! over-approximates the effect of F : D — D in Df

(with effective algorithms)
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Numeric abstract domain examples

X
X

concrete sets D:

X

{(0,3),(5.5,0),(12,7),...}
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Introduction Al

Numeric abstract domain examples

concrete sets D: {(0,3),(5.5,0),(12,7),...}
abstract polyhedra D5:  6X +11Y >33 A ---
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Introduction Al

Numeric abstract domain examples

concrete sets D: {(0,3),(5.5,0),(12,7),...}
abstract polyhedra D5:  6X +11Y >33 A ---
abstract octagons Di: X+ Y >3AY>0A---
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Introduction Al

Numeric abstract domain examples

concrete sets D: {(0,3),(5.5,0),(12,7),...}
abstract polyhedra D5:  6X +11Y >33 A ---
abstract octagons Di: X+ Y >3AY>0A---
abstract intervals D!: X € [0,12] A Y € [0, 8]
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Introduction Al

Numeric abstract domain examples

concrete sets D: {(0,3),(5.5,0),(12,7),...} not computable
abstract polyhedra Df,: 6X+11Y >33 A--- exponential cost
abstract octagons Dg: X+Y>3AY>0A--- cubic cost
abstract intervals D?: X e[0,12] A Y €]0,8] linear cost

Trade-off between cost and expressiveness / precision

Truchet-Miné Al and CP CPAIOR 2015
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Correctness proof and false alarms

The program is correct (blue Nred = 0).
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Truchet-Miné Al and CP




Correctness proof and false alarms

The program is correct (blue Nred = 0).

The polyhedra domain can prove the correctness (cyannred = 0).
[=] = A20N €4




Correctness proof and false alarms

The program is correct (blue Nred = 0).

The polyhedra domain can prove the correctness (cyannred = 0).
The interval domain cannot (green nred # 0, false alarm). .
o = Q




A
Al strengths

In the end, Al tools are able to successfully check huge programs for
run-time errors:

@ primary flight control software of the Airbus A340 (2003), with
132,000 lines of code,

@ electric flight controle code of the Airbus A380 (2004).

What Al does well:
@ very fast approximations of the concrete semantics,
@ analysis of programs with different types (int, float, bool),

@ take into account relations between the variables, with
non-cartesian domains,

@ have different abstract domains coexist in the same analyzer.
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Outline
0 Introduction
e Al

e CP
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CP on an example

Definition (CSP)
@ V: set of variables
@ D: set of domains
@ (C: set of constraints

Example (Continuous)
@ V=(v,wv)
@ D =10,4],0, =[0,4]
@ Ci:vi+vE<2
@ Co:wvo>(vi+1)32+05
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Introduction

CP on an example

Parameter: float r

list of boxes sols <« 0

queue of boxes toExplore <
box e

e < D
push e in toExplore

while toExplore # ) do
e < pop (toExplore)
e < Propagate (e)
if e #0 then
if maxDim(e)< r or isSol (e)
then
sols ¢« sols U e
else

split e in two boxes el and
e2

push el and e2 in toExplore

=} = = = E DA®
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Introduction

CP on an example

Parameter: float r

list of boxes sols <« 0

queue of boxes toExplore <
box e

e < D
push e in toExplore

while toExplore # ) do
e < pop (toExplore)
e < Propagate (e)
if e #0 then
if maxDim(e)< r or isSol (e)
then
sols ¢« sols U e
else

split e in two boxes el and
e2

push el and e2 in toExplore
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Introduction

CP on an example

Parameter: float r

list of boxes sols «+ 0

queue of boxes toExplore «+ 0
box e

e < D
push e in toExplore

while toExplore # ) do
e < pop(toExplore)
e < Propagate (e)
if e #0 then
if maxDim(e)< r or isSol (e)

then
sols 4 sols U e

else
split e in two boxes el and /
e2

push el and e2 in toExplore
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Introduction

CP on an example

Parameter: float r

list of boxes sols «+ 0

queue of boxes toExplore «+ 0
box e

e < D
push e in toExplore

while toExplore # ) do
e < pop(toExplore)
e < Propagate (e)
if e #0 then
if maxDim(e)< r or isSol (e)

then
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split e in two boxes el and /
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Introduction

CP on an example

Parameter: float r

list of boxes sols «+ 0

queue of boxes toExplore «+ )
box e

e < D
push e in toExplore

while toExplore # ) do
e < pop (toExplore)
e < Propagate (e)
if e #0 then

if maxDim(e)< r or isSol (e)

then
sols < sols U e
else
split e in two boxes el and
e2 !

push el and e2 in toExplore
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Introduction

CP on an example

Parameter: float r

list of boxes sols + 0

queue of boxes toExplore <« )
box e

e < D
push e in toExplore

while toExplore # () do
e < pop (toExplore)
e < Propagate (e)
if e #0 then
if maxDim(e)< r or isSol (e)
then
sols < sols U e
else

split e in two boxes el and e2
push el and e2 in toExplore

=} = = = A2 N e
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Introduction

CP on an example

Parameter: float r

list of boxes sols «+ 0

queue of boxes toExplore <+ (0
box e

e < D
push e in toExplore

while toExplore # () do
e < pop (toExplore)
e < Propagate (e)
if e #0 then
if maxDim(e)< r or isSol (e)

then
sols 4 sols U e

else
split e in two boxes el and
e2

push el and e2 in toExplore

=} = = = E DA®
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Introduction CP

CP strengths and weaknesses

What CP does well
@ model many combinatorial problems in a common framework,
@ solve problems on either discrete or continuous variables,
@ add various heuristics to improve the solving methods.

— Efficiently solves many combinatorial problems

What CP does not

@ take into account the correlation of the variables
= restricted to Cartesian product

@ solve mixed discrete-continuous problems in an elegant way
(without conversions).

Truchet-Miné Al and CP CPAIOR 2015
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o
CP and Al ?

Our claim

CP and Al have a lot in common, and the notion of domain is at the
core of their connexions.

An example: two algorithms (at least) have been defined on both
sides, and called differently:
@ HC4 in CP [Benhamou et al., 1999]
/ bottom-up top-down in Al [Cousot and Cousot, 1977],
@ temporal constraints network in CP [Dechter et al., 1989] /
improved Floyd-Warshall for octagons in Al [Miné, 2006].

NB: some links between Al and CP have already been highlighted in
the literature, for instance on the propagation loop in CP vs the chaotic
iterations in Al [Apt, 1999].

Truchet-Miné Al and CP CPAIOR 2015 14/49



Introduction CP

Comparison

@ Same underlying structure (lattices and fixpoints)
@ Same goal: an over-approximation of a desired set

e Solutions set in CP
e Sets of program traces in Al

@ Different fixpoints and iterative schemes

@ Only decreasing iterations in CP
e Both decreasing and increasing iterations in Al

@ Only the soundness (over-approximation) is guaranteed
@ More domains representations in Al than in CP

@ Al naturally deals with different domains in the same framework
(including many non-numerical domains)
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Outline

© Bringing Al ideas to CP
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Questions

Can we abstract the notion of domains in CP ?

Will they be the same as Al abstract domains ?

Can we use Al abstract domains in CP ?

Truchet-Miné Al and CP CPAIOR 2015 17 /49



What already exist in Al

& &

Intervals ~ Zones Octagons Polyhedron

Abstract domains feature:
e transfer functions p* (assignment, test, ...)
@ meet N and join U*
@ widening v and narrowing A?

We need:
@ a consistency
@ a choice/splitting operator
@ a size function

Truchet-Miné Al and CP CPAIOR 2015 18/49



Abstract Solving Method

We define the resolution as a concrete semantics. Then:

@ consistency is defined using transfer function on the constraints

@ propagation loop is defined using local iterations as defined by
[Granger, 1992],

@ the choice operator is added (in disjunctive completions
[Cousot and Cousot, 1992]),

@ the size function is added.

Truchet-Miné Al and CP CPAIOR 2015
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Continuous Solving Method

Parameter: float r

list of boxes sols « 0
queue of boxes toExplore 0
box e < D

push e in toExplore

while toExplore # () do
€ < pop (toExplore)
€< Hull-Consistency (e)
if e#0( then
if maxDim(e) <r or isSol(e) then
sols < solsUe
else
split e in two boxes el and e2
push el and e2 in toExplore

Truchet-Miné Al and CP CPAIOR 2015
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Abstract Solving Method

Parameter: float r

tist—efboxes disjunction sols <+ 0

queve—ofboxes disjunction toExplore <+ 0
box abstract domain e «+ B T°¢

push e in toExplore

while toExplore # () do
€ < pop (toExplore)
€ «+— Hull-consisteneyfer p( )
if e#0( then
if maxbimter 7(€) <r or isSol(e) then
sols < solsUe
else
sptit—e—in—twoboxes—elande2
push elt—and—-2 $(e) in toExplore

Under some conditions on the operators, this abstract solving method
terminates, is correct and complete.

Truchet-Miné Al and CP CPAIOR 2015 20/49



Bringing Al ideas to CP

Implementation

Prototype with Apron [Jeannet and Miné, 2009], an OCaml library of
numerical abstract domains for static analysis
@ Consistency: using transfer functions

@ Propagation loop: at each iteration, propagate all the constraints
— Apply all the transfer functions

@ Split: only Cartesian split
For the moment, does not feature all of the CP techniques. Still to
improve:

@ propagation loop,

@ abstract splitting operator,

@ choice heuristic,
But it naturally copes with mixed integer-real problems.

Truchet-Miné Al and CP CPAIOR 2015 21/49



Bringing Al ideas to CP

Experiments

Comparison between Absolute and lbex.

Itv Oct
| name | #vars [ ctrs [[ loex [ AbSolute lbex | AbSolute
b 4 0.02 0.10 0.26 0.14
nbody5.1 6 = 95.99 1538.25 27.08 -
iop 8 — [ 3883 | 39.24 || 279.36 | 817.86
brent-10 10 = 21.58 263.86 330.73 -
KinematicPair 2 < 59.04 23.14 60.78 31.11
biggsc4 4 < 800.91 414.94 1772.52 688.56
032 5 < 27.36 22.66 40.74 33.17

CPU time in seconds to find all the solutions.
Same solver configuration (octagonal heuristics are unplugged in Absolute).

Truchet-Miné Al and CP

CPAIOR 2015 22/49



Octagons

Definition (Octagon [Miné, 2006])

Set of points satisfying a conjunction of constraints of the form
+v; £ v; < ¢, called octagonal constraints

V2 v27v1§2

@ In dimension n, an octagon has
-2 <5
at most 2n° faces

@ An octagon can be unbounded

@ It can be seen either as a

5 conjunction of octagonal
, V4 constraints, or as an intersection
of boxes.
o = = = = A20N €4
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Octagon abstract domain O¢

Given variables vy, . .., v,, the octagon abstract domain corresponds to

O = {avi+Bv;|i,je [1,n],a,8 € {-1,1}} = F

&
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Octagon abstract domain O¢

Given variables vy, . .., vp, the octagon abstract domain corresponds to
= {OéV,'—f-,BVj|i,j€ [[1,”]],a,ﬁ € {_171}} —F

To(X*) = min( max (X¥(v;+ 8v)) + X¥(=vi = 8)) .
max (XE(vi+ Vi) + X¥(—vi—v)) /2 )

it
N
el
2
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Bringing Al ideas to CP
Octagon abstract domain O¢

Given variables vy,

= {O[V,‘ —+
To(X%) =

Vn, the octagon abstract domain corresponds to
pvili.je1,n),e,8e{-1,1}} = F
min( max (XE(Vi + BY)) + X¥(—v, —

BY;))
max (XE(vi+ Vi) + XA(—vi—v)) /2 )
Do(XF) = {X¥ [(avi + Bv)) > h], X* [(—avi — Bv) > —h] }

Truchet-Miné

Al and CP




Bringing Al ideas to CP

Octagon abstract domain O¢

Given variables vy, . .., v,, the octagon abstract domain corresponds to
O = {av;+Bv;|i,je [1,n],a,8 € {-1,1}} = F
To(XF) = min( max (X*(vi + 8v)) + X¥(=v; = Bv)))
max (XE(vi+ Vi) + X¥(—vi—v)) /2 )

Bo(XF) = {X* [(avi + By)) > h], X* [(—avi— Bv) — —h] }

In practice, consistency is computed by interleaving Floyd-Warshall (for
the octagonal constraints) and the usual constraint propagation on all
the rotated boxes.

Truchet-Miné Al and CP CPAIOR 2015 24/49



Output

Same problem with the same time limit.
Beautiful slide by courtesy of Marie Pelleau = - -



Bringing Al ideas to CP

Experiments

Comparison of an ad-hoc implentation of the same solving algorithm
using either the octagon abstract domain or the intervals.

)

First solution All the solutions
| name | nbvar [ cirs i | Oct 1" |  Oct
h75 5 < 41.40 0.03 - -
hs64 3 < 0.01 0.05 - -
h84 5 < 5.47 2.54 - 7238.74
KinematicPair 2 < 0.00 0.00 53.09 16.56
pramanik 3 = 28.84 0.16 193.14 543.46
trigo1 10 = 18.93 1.38 20.27 28.84
brent-10 10 = 6.96 0.54 17.72 105.02
h74 5 = < 305.98 13.70 1304.23 | 566.31
fredtest 6 = < 3146.44 | 19.33 - -

Solver: Ibex [Chabert and Jaulin, 2009].
Problems from the COCONUT benchmark.
CPU time in seconds, TO 3 hours.

Truchet-Miné Al and CP CPAIOR 2015
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Bringing Al ideas to CP

Why octagons work ?

From a CP point of view, octagons allow us to infer constraints, in a
restricted, reasonably tractable language (O(n®)).

For more details see Marie Pelleau’s papers at CP2011, VMCAI 2013
or in Constraints.

Could it be generalized ?

Truchet-Miné Al and CP CPAIOR 2015 27/49



Bringing Al ideas to CP
Other abstract domains

Work in progress

Polyhedra abstract domain P*

o(X¥) = max |gi—
g

i,9)€

9ill

(X“)—{X“u{Z@-viSh} X*U {Z@vgh}}
/’? ) A

Al and CP




Outline

© Bringing CP ideas to Al

@ Representing disjunctive information
@ lterations
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Representing disjunctive information
Disjunctive properties

Both Al and CP construct complex properties
by disjunctions of simpler ones

In CP:

@ complex shapes are tightly covered with boxes

In Al:

@ abstract domains can generally express only convex sets
conjunctions of constraints, such as intervals or polyhedra

@ program analysis often requires non-convex properties
suchas X #0

= disjunctive completion: use sets of intervals

Truchet-Miné Al and CP CPAIOR 2015 30/49



Representing disjunctive information
Disjunctive analysis: example

if (X>0&& X< 10)B=1;else B=0;
*

if(B==1) e A[X] = 0;

we must prove that 0 < X < 10 at e.

Plain interval analysis:  one box at each program point

at x we must join (B € [1,1], X €[0,9]) and (B € [0,0], X € [—oc0, +c])
to get (B € [0,1], X € [—o0, +¢])

— at e, B == 1 gives no information an X!

With disjunctive completion:  keep several boxes at each control point

by avoiding (or delaying) the abstract join at =
= ate, B==1recovers X € [0, 9]

This works well because the disjunction can be guided by the control flow:
each disjunct corresponds to a branch of the first if

Truchet-Miné Al and CP CPAIOR 2015 31/49



Bringing CP ideas to Al Representing disjunctive information

Control-free programs

What happens when there is no explicit control flow?

while true do
r=15xs0-0.7 x s1 +input [-0.1,0.1];

s1=s0; sO=r;
done

In this example, the reachable states (s0,s1) form an ellipsoid.
no if-then-else, no join operation to create additional boxes
= even with disjunctive completion, Al will use a single box

This will not work (see next slide)

Truchet-Miné Al and CP CPAIOR 2015 32/49



Bringing CP ideas to Al

Control-free programs: limitations of boxes

When searching for a valid approximation,
Al searches for an inductive invariant:
i.e., a shape X that is stable by a loop iteration F(x) C x

®
’\ ~

There is a stable ellipsoid No single box is stable

= the analysis with boxes will fail

Standard Al solution:
abandon boxes

make a new abstract domain representing directly ellipsoids
(hard work, that must be redone for every shape)

o 5 =

DA
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Bringing CP ideas to Al Representing disjunctive information

Towards more powerful disjunctive representations

CP knows naturally how to approximate an ellipsoid with a set of boxes
to an arbitrary precision criterion

idea: can we use CP to avoid designing an ellipsoid domain?

Challenges:

@ new precision criterion:
the boxes must be tight enough to form an inductive set

@ no control-flow to guide the disjunction

Truchet-Miné Al and CP CPAIOR 2015 34/49



Outline

© Bringing CP ideas to Al

@ Representing disjunctive information
@ lterations
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Bringing CP ideas to Al Iterations

Fixpoint computations

In Al, the semantic problem is expressed as a fixpoint
(generally, a least fixpoint)
Interval analysis:

searching for an interval loop invariant i for x

x =0; :

e i=1pF

hil 100 d
s F(x) = [0,0] U ((x 1 [~00,99]) @ [2,2])
done

U, M, @ are U, N, + in the interval domain

—> we must over-approximate least fixpoints

classic technique:

@ increasing iterations: from 0, iterate F
use extrapolation v to finish in finite time
= we obtain a rough over-approximation

@ decreasing iterations to refine the approximation

(explained in the following slides)

Truchet-Miné Al and CP CPAIOR 2015
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Bringing CP ideas to Al Iterations

Increasing iterations in Al

F(X) = [07 O] U ((X M [—OO, 99]) @ [2?2])
the least fixpoint is: Ifp F = [0, 101]
the iterates are: 0, [0, 0], [0, 2], [0,4], ..., [0,98], [0,100], [0,101]

Truchet-Miné Al and CP CPAIOR 2015
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Increasing iterations with extrapolation in Al

F(X) = [07 O] U ((X M [—OO, 99]) @ [2?2])
the least fixpoint is: 1fp F = [0, 101]
the iterates with extrapolation are: ), [0, 0], [0, 2], [0, +o¢]

unstable bounds are set to +oco
— over-approximates [0, 101], but coarse

Truchet-Miné Al and CP CPAIOR 2015 38/49



Bringing CP ideas to Al Iterations

Decreasing iterations in Al

F(X) = [070] U ((X|—| [_00799]) @ [2?2])
the least fixpoint approximation is: [0, 4o0]

the gain precision, we continue iterating
the iterates are now decreasing towards the fixpoint

the decreasing iterates are: [0, +o¢], [0, 101]

Truchet-Miné Al and CP CPAIOR 2015 39/49



Bringing CP ideas to Al Iterations

Decreasing iterations in Al

Possible issues:
@ decreasing sequence may be too slow (or non-terminating)
— stop it short
@ Al has narrowing operators to extrapolate decreasing sequences
but they often fail

@ if the extrapolation during increasing iteration is too coarse
we may never be able to recover enough precision

if we jJump above a non-least fixpoint, we will stay above it
and never reach the least fixpoint

Truchet-Miné Al and CP CPAIOR 2015 40/ 49



How CP might help Al iterations

CP solving can be seen as an iteration sequence
@ decreasing iterations

@ can approach the fixpoint form above with arbitrary precision

L

=g

Could we use CP to:

@ make more precise decreasing iterations?

@ in particular, split during the iteration

@ adapt it to the increasing iteration as well?

Truchet-Miné Al and CP
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Outline

@ Analyzing Sound Processes with Constraints
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Sound processes (ongoing work !)

Our goal: prove that sound processes do not produce saturated
sounds.

T L by T
T

-10f

o 5 =
Truchet-Miné Al and CP



Analyzing Sound Processes with Constraints

Faust

@ Faust is a Domain-Specific Language for real-time signal
processing and synthesis (like Csound, Max/MSP, Supercollider,
Puredata,...).

@ Faust is used on stage for concerts and artistic productions, for
education and research, for open-source projects and commercial
applications.

@ http://faust.grame.fr
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http://faust.grame.fr

Faust

process= bruitblanc » hslider("level",0,0,1,0.01);
bruitblanc = +(12345) " x(1103515245) : /(2147483647.0);

FPrOCESS = = = = = = = = = = = —————— o —
! rbruitblane - - - - - - - - - oo

1103515245

2.14748e+09

hslider(level, 0.0f, 0.0f, 1.0f, 0.01f)

y[n] = x[n]/2147483647.0 x /[n]
x[n] = 12345+ x[n— 1]« 1103515245
[0..1] Ul'level slider

—
=
m

=} = = = A2 N e
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Analyzing Sound Processes with Constraints

Analyzing sound processes

Faust comes with a formal semantic based on block-diagram. All the
variables are infinite streams over the reals.

o = = = DA
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Analyzing Sound Processes with Constraints

Analyzing sound processes

We first rewrite this BD in order to identify non-functional dependencies
on the streams (fby instructions / temporal dependencies).

[0.9; 0.9; 0.9; 0.9]

a
[0; 0.09; 0.17; 0.24] p| [0 0.1; 0.19; 0.27]

€ [0; 0; 0; 0]

d Ny
[0.1; 0.1; 0.1; 0.1)

[0.1; 0.19; 0.27; 0.34]
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Analyzing Sound Processes with Constraints

Analyzing sound processes

We abstract time, replacing the streams by an envelope of their
possible values, and generate a constraint problem on real intervals.

a = [fby](e,c) d:=[0.1]
b:=[x](af) e:=][0]
c:=[+b =10.9]
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Analyzing Sound Processes with Constraints

Analyzing sound processes

The we build the graph of these dependencies, which is used as a
basis to propagate the constraints.
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Analyzing Sound Processes with Constraints

Analyzing sound processes

Finally, the system is solved by an ad hoc algorithm that:
@ propagates the functional dependencies,

@ randomly, but cleverly, jumps over the fixpoints in order to
approximate the least fixpoint for loops.

See Anicet Bart's paper at JFPC 2015 for more details.
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Analyzing Sound Processes with Constraints

Tests
t blocks time distance t blocks evaluations

program (# fby) avg avg min | avg [ max
SIMPLE-ECHO 4 (1) 1ms < 0,001 4 4 4
SIMPLE-COUNTER 3(2) 11ms 0 3604 3620 3635
SIMPLE-SINUS 4 (2) 10ms 0 3595 3619 3637
PAPER-EXAMPLE 4(2) 16ms < 0,001 3169 3214 3260
FAUST-NOISE 6(2) 1ms 0 115 115 115
FAUST-VOLUME 8(2) 21ms 0 4153 4249 4318
FAUST-ECHO 16 (2) 14ms 0 3156 3170 3182
FAUST-OSC 28 (7) 31ms < 0,001 7791 7871 7916
FAUST-FREEVERB 237 (104) 0,51s 0 48348 48356 48360
FAUST-KARPLUS32 530 (133) 0,69s 0 102813 | 102828 | 102842
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Conclusion

Conclusion

Conclusion

By relying on the common notion of domains, we can combine the
strengths of both Al and CP:

@ CP can be precise,

@ Al can have different types and adapt the domains to the
problems.

Further research

@ improve the CP features of Absolute: global constraints, heuristics,

@ adapt the abstract domains to the constraints,
o ..

There is a lot to be done !
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Play with us !

To try Al numerical domains, try the Interproc toy language, which
uses Apron:

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

There is no webpage for Absolute for now, but we would be happy to
share the code. Just send us an email !
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