Abstract Interpretation and Constraint
Programming

Charlotte Truchet!, Antoine Miné?

T TASC, LINA (UMR 6241), Université de Nantes, France
2 Antique, LIENS (UMR 8548), ENS, Paris, France

CPAIOR
May 19th, 2015

Truchet-Miné Al and CP CPAIOR 2015 1/49

Antoine cannot be here in Barcelona, so here he is:

The following is based on joint works with

Marie Pelleau Fréderic Benhamou Anicet Bart Eric Monfroy

! S =
\\ -
|

Truchet-Miné Al and CP CPAIOR 2015 2/49

Outline

@ Introduction
@ Al
e CP

© Bringing Al ideas to CP

© Bringing CP ideas to Al
@ Representing disjunctive information
@ [terations

6 Analyzing Sound Processes with Constraints
6 Conclusion

NB: in the following, Al means Abstract Interpretation.

Truchet-Miné Al and CP CPAIOR 2015 3/49

Zoom on: Ariane 5, Flight 501

Maiden flight of the Ariane 5 Launcher, 4 June 1996.

=] = = E na
Truchet-Miné Al and CP

Zoom on: Ariane 5, Flight 501

40s after launch. ..

=] = = E na
Truchet-Miné Al and CP

A
Zoom on: Ariane 5, Flight 501

Cause: software error!

@ arithmetic overflow in unprotected data conversion from 64-bit
float to 16-bit integer types?

P_M DERIVE (T_ALG.E_BH) :=
UC_16S_EN_16NS (TDB.T_ENTIER_16S
((1.0/C_M_LSB_BH) * G_M_INFO_DERIVE (T_ALG.E_BH)));

@ software exception not caught
= computer switched off

@ all backup computers run the same software
— all computers switched off, no guidance
— rocket self-destructs

Truchet-Miné Al and CP CPAIOR 2015

5/49

Introduction Al

Abstract interpretation

JIESH

Université Scientifique et Médicale de Grenoble
Institut National Polytechnique de Grenoble

General theory of the approximation and comparison
of program semantics:

@ unifies many existing semantics

@ allows the definition of new static analyses that are correct by
construction

Truchet-Miné Al and CP CPAIOR 2015 6/49

Introduction

Concrete and abstract semantics

(So)
assume X in [0,1000];
(S1)
I := 0;
(S2)
while (S3) I < X do
(S4)
I =1+ 2;
(Ss)
(Se)
program

=] = = E na
Truchet-Miné Al and CP

A
Concrete and abstract semantics

(So)

assume X in [0,1000]; SieD=P{1,x} = 7Z)

(S1) So={(i,x)|i,xeZ} =T

I := 0; S1={(i,X)ESo|X€[0,1000]} =F1(80)

(82) 82 = {(O,X) | ﬂi, (i,X) c 81 } = F2(S1)

while (S3) I < X do S5 =8, USs
(84) S4Z{(i,X)653|i<X} :F4(33)
I =1+ 2; Ss={(+2,x)[(i,x)€Ss} =Fs(S4)
(85) 35:{(i,X)ES3| IZX} :F6(83)

(Ss)

program semantics

Concrete semantics S; € D = P({1,x} — Z):
@ strongest invariant (and an inductive invariant)
@ not computable in general
@ smallest solution of a system of equations

Truchet-Miné Al and CP CPAIOR 2015 7149

Introduction Al

Concrete and abstract semantics

(So) T

assume X in [0,1000]; Si €D

(S1) Sp=Tt!

T 8 = F(Sy)

(&) 5= Fis)

while (S3) I < X do S§ — Sé Ut S§
(S4) St — Fﬁ(sﬁ)
I pap— I + 2 - 4 4 3
(S) ’ St = Fi(S})

5
(Se) Se = FE(S3)
program semantics

Abstract semantics S¢ € D'

@ D' is a subset of properties of interest (approximation)
with a machine representation
e F*: D! - D! over-approximates the effect of F : D — D in Df

(with effective algorithms)

Truchet-Miné Al and CP CPAIOR 2015 7149

Numeric abstract domain examples

X
X

concrete sets D:

X

{(0,3),(5.5,0),(12,7),...}

=] = = E na
Truchet-Miné Al and CP

Introduction Al

Numeric abstract domain examples

concrete sets D: {(0,3),(5.5,0),(12,7),...}
abstract polyhedra D5: 6X +11Y >33 A ---

Truchet-Miné Al and CP CPAIOR 2015 8/49

Introduction Al

Numeric abstract domain examples

concrete sets D: {(0,3),(5.5,0),(12,7),...}
abstract polyhedra D5: 6X +11Y >33 A ---
abstract octagons Di: X+ Y >3AY>0A---

Truchet-Miné Al and CP CPAIOR 2015 8/49

Introduction Al

Numeric abstract domain examples

concrete sets D: {(0,3),(5.5,0),(12,7),...}
abstract polyhedra D5: 6X +11Y >33 A ---
abstract octagons Di: X+ Y >3AY>0A---
abstract intervals D!: X € [0,12] A Y € [0, 8]

Truchet-Miné Al and CP CPAIOR 2015 8/49

Introduction Al

Numeric abstract domain examples

concrete sets D: {(0,3),(5.5,0),(12,7),...} not computable
abstract polyhedra Df,: 6X+11Y >33 A--- exponential cost
abstract octagons Dg: X+Y>3AY>0A--- cubic cost
abstract intervals D?: X e[0,12] A Y €]0,8] linear cost

Trade-off between cost and expressiveness / precision

Truchet-Miné Al and CP CPAIOR 2015

8/49

Correctness proof and false alarms

The program is correct (blue Nred = 0).

o = na
Truchet-Miné Al and CP

Correctness proof and false alarms

The program is correct (blue Nred = 0).

The polyhedra domain can prove the correctness (cyannred = 0).
[=] = A20N €4

Correctness proof and false alarms

The program is correct (blue Nred = 0).

The polyhedra domain can prove the correctness (cyannred = 0).
The interval domain cannot (green nred # 0, false alarm). .
o = Q

A
Al strengths

In the end, Al tools are able to successfully check huge programs for
run-time errors:

@ primary flight control software of the Airbus A340 (2003), with
132,000 lines of code,

@ electric flight controle code of the Airbus A380 (2004).

What Al does well:
@ very fast approximations of the concrete semantics,
@ analysis of programs with different types (int, float, bool),

@ take into account relations between the variables, with
non-cartesian domains,

@ have different abstract domains coexist in the same analyzer.

Truchet-Miné Al and CP CPAIOR 2015 10/ 49

Outline
0 Introduction
e Al

e CP

=] = = E na
Truchet-Miné Al and CP

CP on an example

Definition (CSP)
@ V: set of variables
@ D: set of domains
@ (C: set of constraints

Example (Continuous)
@ V=(v,wv)
@ D =10,4],0, =[0,4]
@ Ci:vi+vE<2
@ Co:wvo>(vi+1)32+05

=] = = E na
Truchet-Miné Al and CP

Introduction

CP on an example

Parameter: float r

list of boxes sols <« 0

queue of boxes toExplore <
box e

e < D
push e in toExplore

while toExplore #) do
e < pop (toExplore)
e < Propagate (e)
if e #0 then
if maxDim(e)< r or isSol (e)
then
sols ¢« sols U e
else

split e in two boxes el and
e2

push el and e2 in toExplore

=} = = = E DA®

Truchet-Miné Al and CP

Introduction

CP on an example

Parameter: float r

list of boxes sols <« 0

queue of boxes toExplore <
box e

e < D
push e in toExplore

while toExplore #) do
e < pop (toExplore)
e < Propagate (e)
if e #0 then
if maxDim(e)< r or isSol (e)
then
sols ¢« sols U e
else

split e in two boxes el and
e2

push el and e2 in toExplore

=} = = = A2 N e

Truchet-Miné Al and CP

Introduction

CP on an example

Parameter: float r

list of boxes sols «+ 0

queue of boxes toExplore «+ 0
box e

e < D
push e in toExplore

while toExplore #) do
e < pop(toExplore)
e < Propagate (e)
if e #0 then
if maxDim(e)< r or isSol (e)

then
sols 4 sols U e

else
split e in two boxes el and /
e2

push el and e2 in toExplore

u]

@
I

ul
it
N
el
]

Truchet-Miné Al and CP

Introduction

CP on an example

Parameter: float r

list of boxes sols «+ 0

queue of boxes toExplore «+ 0
box e

e < D
push e in toExplore

while toExplore #) do
e < pop(toExplore)
e < Propagate (e)
if e #0 then
if maxDim(e)< r or isSol (e)

then
sols 4 sols U e

else
split e in two boxes el and /
e2

push el and e2 in toExplore

=} = = = A2 N e

Truchet-Miné Al and CP

Introduction

CP on an example

Parameter: float r

list of boxes sols «+ 0

queue of boxes toExplore «+)
box e

e < D
push e in toExplore

while toExplore #) do
e < pop (toExplore)
e < Propagate (e)
if e #0 then

if maxDim(e)< r or isSol (e)

then
sols < sols U e
else
split e in two boxes el and
e2 !

push el and e2 in toExplore

=} = = = A2 N e

Truchet-Miné Al and CP

Introduction

CP on an example

Parameter: float r

list of boxes sols + 0

queue of boxes toExplore <«)
box e

e < D
push e in toExplore

while toExplore # () do
e < pop (toExplore)
e < Propagate (e)
if e #0 then
if maxDim(e)< r or isSol (e)
then
sols < sols U e
else

split e in two boxes el and e2
push el and e2 in toExplore

=} = = = A2 N e

Truchet-Miné Al and CP

Introduction

CP on an example

Parameter: float r

list of boxes sols «+ 0

queue of boxes toExplore <+ (0
box e

e < D
push e in toExplore

while toExplore # () do
e < pop (toExplore)
e < Propagate (e)
if e #0 then
if maxDim(e)< r or isSol (e)

then
sols 4 sols U e

else
split e in two boxes el and
e2

push el and e2 in toExplore

=} = = = E DA®

Truchet-Miné Al and CP

Introduction CP

CP strengths and weaknesses

What CP does well
@ model many combinatorial problems in a common framework,
@ solve problems on either discrete or continuous variables,
@ add various heuristics to improve the solving methods.

— Efficiently solves many combinatorial problems

What CP does not

@ take into account the correlation of the variables
= restricted to Cartesian product

@ solve mixed discrete-continuous problems in an elegant way
(without conversions).

Truchet-Miné Al and CP CPAIOR 2015

13/49

o
CP and Al ?

Our claim

CP and Al have a lot in common, and the notion of domain is at the
core of their connexions.

An example: two algorithms (at least) have been defined on both
sides, and called differently:
@ HC4 in CP [Benhamou et al., 1999]
/ bottom-up top-down in Al [Cousot and Cousot, 1977],
@ temporal constraints network in CP [Dechter et al., 1989] /
improved Floyd-Warshall for octagons in Al [Miné, 2006].

NB: some links between Al and CP have already been highlighted in
the literature, for instance on the propagation loop in CP vs the chaotic
iterations in Al [Apt, 1999].

Truchet-Miné Al and CP CPAIOR 2015 14/49

Introduction CP

Comparison

@ Same underlying structure (lattices and fixpoints)
@ Same goal: an over-approximation of a desired set

e Solutions set in CP
e Sets of program traces in Al

@ Different fixpoints and iterative schemes

@ Only decreasing iterations in CP
e Both decreasing and increasing iterations in Al

@ Only the soundness (over-approximation) is guaranteed
@ More domains representations in Al than in CP

@ Al naturally deals with different domains in the same framework
(including many non-numerical domains)

Truchet-Miné Al and CP CPAIOR 2015 15/49

Outline

© Bringing Al ideas to CP

=] = = E na
Truchet-Miné Al and CP

Questions

Can we abstract the notion of domains in CP ?

Will they be the same as Al abstract domains ?

Can we use Al abstract domains in CP ?

Truchet-Miné Al and CP CPAIOR 2015 17 /49

What already exist in Al

& &

Intervals ~ Zones Octagons Polyhedron

Abstract domains feature:
e transfer functions p* (assignment, test, ...)
@ meet N and join U*
@ widening v and narrowing A?

We need:
@ a consistency
@ a choice/splitting operator
@ a size function

Truchet-Miné Al and CP CPAIOR 2015 18/49

Abstract Solving Method

We define the resolution as a concrete semantics. Then:

@ consistency is defined using transfer function on the constraints

@ propagation loop is defined using local iterations as defined by
[Granger, 1992],

@ the choice operator is added (in disjunctive completions
[Cousot and Cousot, 1992]),

@ the size function is added.

Truchet-Miné Al and CP CPAIOR 2015

b

19/49

Continuous Solving Method

Parameter: float r

list of boxes sols « 0
queue of boxes toExplore 0
box e < D

push e in toExplore

while toExplore # () do
€ < pop (toExplore)
€< Hull-Consistency (e)
if e#0(then
if maxDim(e) <r or isSol(e) then
sols < solsUe
else
split e in two boxes el and e2
push el and e2 in toExplore

Truchet-Miné Al and CP CPAIOR 2015

20/49

Abstract Solving Method

Parameter: float r

tist—efboxes disjunction sols <+ 0

queve—ofboxes disjunction toExplore <+ 0
box abstract domain e «+ B T°¢

push e in toExplore

while toExplore # () do
€ < pop (toExplore)
€ «+— Hull-consisteneyfer p()
if e#0(then
if maxbimter 7(€) <r or isSol(e) then
sols < solsUe
else
sptit—e—in—twoboxes—elande2
push elt—and—-2 $(e) in toExplore

Under some conditions on the operators, this abstract solving method
terminates, is correct and complete.

Truchet-Miné Al and CP CPAIOR 2015 20/49

Bringing Al ideas to CP

Implementation

Prototype with Apron [Jeannet and Miné, 2009], an OCaml library of
numerical abstract domains for static analysis
@ Consistency: using transfer functions

@ Propagation loop: at each iteration, propagate all the constraints
— Apply all the transfer functions

@ Split: only Cartesian split
For the moment, does not feature all of the CP techniques. Still to
improve:

@ propagation loop,

@ abstract splitting operator,

@ choice heuristic,
But it naturally copes with mixed integer-real problems.

Truchet-Miné Al and CP CPAIOR 2015 21/49

Bringing Al ideas to CP

Experiments

Comparison between Absolute and lbex.

Itv Oct
| name | #vars [ctrs [[loex [AbSolute lbex | AbSolute
b 4 0.02 0.10 0.26 0.14
nbody5.1 6 = 95.99 1538.25 27.08 -
iop 8 — [3883 | 39.24 || 279.36 | 817.86
brent-10 10 = 21.58 263.86 330.73 -
KinematicPair 2 < 59.04 23.14 60.78 31.11
biggsc4 4 < 800.91 414.94 1772.52 688.56
032 5 < 27.36 22.66 40.74 33.17

CPU time in seconds to find all the solutions.
Same solver configuration (octagonal heuristics are unplugged in Absolute).

Truchet-Miné Al and CP

CPAIOR 2015 22/49

Octagons

Definition (Octagon [Miné, 2006])

Set of points satisfying a conjunction of constraints of the form
+v; £ v; < ¢, called octagonal constraints

V2 v27v1§2

@ In dimension n, an octagon has
-2 <5
at most 2n° faces

@ An octagon can be unbounded

@ It can be seen either as a

5 conjunction of octagonal
, V4 constraints, or as an intersection
of boxes.
o = = = = A20N €4

Truchet-Miné Al and CP

Octagon abstract domain O¢

Given variables vy, . .., v,, the octagon abstract domain corresponds to

O = {avi+Bv;|i,je [1,n],a,8 € {-1,1}} = F

&

Truchet-Miné

Al and CP

Octagon abstract domain O¢

Given variables vy, . .., vp, the octagon abstract domain corresponds to
= {OéV,'—f-,BVj|i,j€ [[1,”]],a,ﬁ € {_171}} —F

To(X*) = min(max (X¥(v;+ 8v)) + X¥(=vi = 8)) .
max (XE(vi+ Vi) + X¥(—vi—v)) /2)

it
N
el
2

Truchet-Miné Al and CP

Bringing Al ideas to CP
Octagon abstract domain O¢

Given variables vy,

= {O[V,‘ —+
To(X%) =

Vn, the octagon abstract domain corresponds to
pvili.je1,n),e,8e{-1,1}} = F
min(max (XE(Vi + BY)) + X¥(—v, —

BY;))
max (XE(vi+ Vi) + XA(—vi—v)) /2)
Do(XF) = {X¥ [(avi + Bv)) > h], X* [(—avi — Bv) > —h] }

Truchet-Miné

Al and CP

Bringing Al ideas to CP

Octagon abstract domain O¢

Given variables vy, . .., v,, the octagon abstract domain corresponds to
O = {av;+Bv;|i,je [1,n],a,8 € {-1,1}} = F
To(XF) = min(max (X*(vi + 8v)) + X¥(=v; = Bv)))
max (XE(vi+ Vi) + X¥(—vi—v)) /2)

Bo(XF) = {X* [(avi + By)) > h], X* [(—avi— Bv) — —h] }

In practice, consistency is computed by interleaving Floyd-Warshall (for
the octagonal constraints) and the usual constraint propagation on all
the rotated boxes.

Truchet-Miné Al and CP CPAIOR 2015 24/49

Output

Same problem with the same time limit.
Beautiful slide by courtesy of Marie Pelleau = - -

Bringing Al ideas to CP

Experiments

Comparison of an ad-hoc implentation of the same solving algorithm
using either the octagon abstract domain or the intervals.

)

First solution All the solutions
| name | nbvar [cirs i | Oct 1" | Oct
h75 5 < 41.40 0.03 - -
hs64 3 < 0.01 0.05 - -
h84 5 < 5.47 2.54 - 7238.74
KinematicPair 2 < 0.00 0.00 53.09 16.56
pramanik 3 = 28.84 0.16 193.14 543.46
trigo1 10 = 18.93 1.38 20.27 28.84
brent-10 10 = 6.96 0.54 17.72 105.02
h74 5 = < 305.98 13.70 1304.23 | 566.31
fredtest 6 = < 3146.44 | 19.33 - -

Solver: Ibex [Chabert and Jaulin, 2009].
Problems from the COCONUT benchmark.
CPU time in seconds, TO 3 hours.

Truchet-Miné Al and CP CPAIOR 2015

26 /49

Bringing Al ideas to CP

Why octagons work ?

From a CP point of view, octagons allow us to infer constraints, in a
restricted, reasonably tractable language (O(n®)).

For more details see Marie Pelleau’s papers at CP2011, VMCAI 2013
or in Constraints.

Could it be generalized ?

Truchet-Miné Al and CP CPAIOR 2015 27/49

Bringing Al ideas to CP
Other abstract domains

Work in progress

Polyhedra abstract domain P*

o(X¥) = max |gi—
g

i,9)€

9ill

(X“)—{X“u{Z@-viSh} X*U {Z@vgh}}
/’?) A

Al and CP

Outline

© Bringing CP ideas to Al

@ Representing disjunctive information
@ lterations

=] = = E na
Truchet-Miné Al and CP

Representing disjunctive information
Disjunctive properties

Both Al and CP construct complex properties
by disjunctions of simpler ones

In CP:

@ complex shapes are tightly covered with boxes

In Al:

@ abstract domains can generally express only convex sets
conjunctions of constraints, such as intervals or polyhedra

@ program analysis often requires non-convex properties
suchas X #0

= disjunctive completion: use sets of intervals

Truchet-Miné Al and CP CPAIOR 2015 30/49

Representing disjunctive information
Disjunctive analysis: example

if (X>0&& X< 10)B=1;else B=0;
*

if(B==1) e A[X] = 0;

we must prove that 0 < X < 10 at e.

Plain interval analysis: one box at each program point

at x we must join (B € [1,1], X €[0,9]) and (B € [0,0], X € [—oc0, +c])
to get (B € [0,1], X € [—o0, +¢])

— at e, B == 1 gives no information an X!

With disjunctive completion: keep several boxes at each control point

by avoiding (or delaying) the abstract join at =
= ate, B==1recovers X € [0, 9]

This works well because the disjunction can be guided by the control flow:
each disjunct corresponds to a branch of the first if

Truchet-Miné Al and CP CPAIOR 2015 31/49

Bringing CP ideas to Al Representing disjunctive information

Control-free programs

What happens when there is no explicit control flow?

while true do
r=15xs0-0.7 x s1 +input [-0.1,0.1];

s1=s0; sO=r;
done

In this example, the reachable states (s0,s1) form an ellipsoid.
no if-then-else, no join operation to create additional boxes
= even with disjunctive completion, Al will use a single box

This will not work (see next slide)

Truchet-Miné Al and CP CPAIOR 2015 32/49

Bringing CP ideas to Al

Control-free programs: limitations of boxes

When searching for a valid approximation,
Al searches for an inductive invariant:
i.e., a shape X that is stable by a loop iteration F(x) C x

®
’\ ~

There is a stable ellipsoid No single box is stable

= the analysis with boxes will fail

Standard Al solution:
abandon boxes

make a new abstract domain representing directly ellipsoids
(hard work, that must be redone for every shape)

o 5 =

DA

Truchet-Miné Al and CP

Bringing CP ideas to Al Representing disjunctive information

Towards more powerful disjunctive representations

CP knows naturally how to approximate an ellipsoid with a set of boxes
to an arbitrary precision criterion

idea: can we use CP to avoid designing an ellipsoid domain?

Challenges:

@ new precision criterion:
the boxes must be tight enough to form an inductive set

@ no control-flow to guide the disjunction

Truchet-Miné Al and CP CPAIOR 2015 34/49

Outline

© Bringing CP ideas to Al

@ Representing disjunctive information
@ lterations

=] = = E na
Truchet-Miné Al and CP

Bringing CP ideas to Al Iterations

Fixpoint computations

In Al, the semantic problem is expressed as a fixpoint
(generally, a least fixpoint)
Interval analysis:

searching for an interval loop invariant i for x

x =0; :

e i=1pF

hil 100 d
s F(x) = [0,0] U ((x 1 [~00,99]) @ [2,2])
done

U, M, @ are U, N, + in the interval domain

—> we must over-approximate least fixpoints

classic technique:

@ increasing iterations: from 0, iterate F
use extrapolation v to finish in finite time
= we obtain a rough over-approximation

@ decreasing iterations to refine the approximation

(explained in the following slides)

Truchet-Miné Al and CP CPAIOR 2015

36/49

Bringing CP ideas to Al Iterations

Increasing iterations in Al

F(X) = [07 O] U ((X M [—OO, 99]) @ [2?2])
the least fixpoint is: Ifp F = [0, 101]
the iterates are: 0, [0, 0], [0, 2], [0,4], ..., [0,98], [0,100], [0,101]

Truchet-Miné Al and CP CPAIOR 2015

37/49

Increasing iterations with extrapolation in Al

F(X) = [07 O] U ((X M [—OO, 99]) @ [2?2])
the least fixpoint is: 1fp F = [0, 101]
the iterates with extrapolation are:), [0, 0], [0, 2], [0, +o¢]

unstable bounds are set to +oco
— over-approximates [0, 101], but coarse

Truchet-Miné Al and CP CPAIOR 2015 38/49

Bringing CP ideas to Al Iterations

Decreasing iterations in Al

F(X) = [070] U ((X|—| [_00799]) @ [2?2])
the least fixpoint approximation is: [0, 4o0]

the gain precision, we continue iterating
the iterates are now decreasing towards the fixpoint

the decreasing iterates are: [0, +o¢], [0, 101]

Truchet-Miné Al and CP CPAIOR 2015 39/49

Bringing CP ideas to Al Iterations

Decreasing iterations in Al

Possible issues:
@ decreasing sequence may be too slow (or non-terminating)
— stop it short
@ Al has narrowing operators to extrapolate decreasing sequences
but they often fail

@ if the extrapolation during increasing iteration is too coarse
we may never be able to recover enough precision

if we jJump above a non-least fixpoint, we will stay above it
and never reach the least fixpoint

Truchet-Miné Al and CP CPAIOR 2015 40/ 49

How CP might help Al iterations

CP solving can be seen as an iteration sequence
@ decreasing iterations

@ can approach the fixpoint form above with arbitrary precision

L

=g

Could we use CP to:

@ make more precise decreasing iterations?

@ in particular, split during the iteration

@ adapt it to the increasing iteration as well?

Truchet-Miné Al and CP

CPAIOR 2015

41/49

Outline

@ Analyzing Sound Processes with Constraints

=] = = E na
Truchet-Miné Al and CP

Sound processes (ongoing work !)

Our goal: prove that sound processes do not produce saturated
sounds.

T L by T
T

-10f

o 5 =
Truchet-Miné Al and CP

Analyzing Sound Processes with Constraints

Faust

@ Faust is a Domain-Specific Language for real-time signal
processing and synthesis (like Csound, Max/MSP, Supercollider,
Puredata,...).

@ Faust is used on stage for concerts and artistic productions, for
education and research, for open-source projects and commercial
applications.

@ http://faust.grame.fr

Truchet-Miné Al and CP CPAIOR 2015 44 /49

http://faust.grame.fr

Faust

process= bruitblanc » hslider("level",0,0,1,0.01);
bruitblanc = +(12345) " x(1103515245) : /(2147483647.0);

FPrOCESS = = = = = = = = = = = —————— o —
! rbruitblane - - - - - - - - - oo

1103515245

2.14748e+09

hslider(level, 0.0f, 0.0f, 1.0f, 0.01f)

y[n] = x[n]/2147483647.0 x /[n]
x[n] = 12345+ x[n— 1]« 1103515245
[0..1] Ul'level slider

—
=
m

=} = = = A2 N e

Truchet-Miné Al and CP

Analyzing Sound Processes with Constraints

Analyzing sound processes

Faust comes with a formal semantic based on block-diagram. All the
variables are infinite streams over the reals.

o = = = DA

Truchet-Miné Al and CP

Analyzing Sound Processes with Constraints

Analyzing sound processes

We first rewrite this BD in order to identify non-functional dependencies
on the streams (fby instructions / temporal dependencies).

[0.9; 0.9; 0.9; 0.9]

a
[0; 0.09; 0.17; 0.24] p| [0 0.1; 0.19; 0.27]

€ [0; 0; 0; 0]

d Ny
[0.1; 0.1; 0.1; 0.1)

[0.1; 0.19; 0.27; 0.34]

Truchet-Miné

Al and CP

Analyzing Sound Processes with Constraints

Analyzing sound processes

We abstract time, replacing the streams by an envelope of their
possible values, and generate a constraint problem on real intervals.

a = [fby](e,c) d:=[0.1]
b:=[x](af) e:=][0]
c:=[+b =10.9]

Truchet-Miné Al and CP CPAIOR 2015 46 /49

Analyzing Sound Processes with Constraints

Analyzing sound processes

The we build the graph of these dependencies, which is used as a
basis to propagate the constraints.

Truchet-Miné Al and CP CPAIOR 2015 46 /49

Analyzing Sound Processes with Constraints

Analyzing sound processes

Finally, the system is solved by an ad hoc algorithm that:
@ propagates the functional dependencies,

@ randomly, but cleverly, jumps over the fixpoints in order to
approximate the least fixpoint for loops.

See Anicet Bart's paper at JFPC 2015 for more details.

Truchet-Miné Al and CP CPAIOR 2015 46 /49

Analyzing Sound Processes with Constraints

Tests
t blocks time distance t blocks evaluations

program (# fby) avg avg min | avg [max
SIMPLE-ECHO 4 (1) 1ms < 0,001 4 4 4
SIMPLE-COUNTER 3(2) 11ms 0 3604 3620 3635
SIMPLE-SINUS 4 (2) 10ms 0 3595 3619 3637
PAPER-EXAMPLE 4(2) 16ms < 0,001 3169 3214 3260
FAUST-NOISE 6(2) 1ms 0 115 115 115
FAUST-VOLUME 8(2) 21ms 0 4153 4249 4318
FAUST-ECHO 16 (2) 14ms 0 3156 3170 3182
FAUST-OSC 28 (7) 31ms < 0,001 7791 7871 7916
FAUST-FREEVERB 237 (104) 0,51s 0 48348 48356 48360
FAUST-KARPLUS32 530 (133) 0,69s 0 102813 | 102828 | 102842

Truchet-Miné Al and CP CPAIOR 2015 47 /49

Conclusion

Conclusion

Conclusion

By relying on the common notion of domains, we can combine the
strengths of both Al and CP:

@ CP can be precise,

@ Al can have different types and adapt the domains to the
problems.

Further research

@ improve the CP features of Absolute: global constraints, heuristics,

@ adapt the abstract domains to the constraints,
o ..

There is a lot to be done !

Truchet-Miné Al and CP CPAIOR 2015 48/ 49

Play with us !

To try Al numerical domains, try the Interproc toy language, which
uses Apron:

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

There is no webpage for Absolute for now, but we would be happy to
share the code. Just send us an email !

Truchet-Miné Al and CP CPAIOR 2015 49/49

 http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

Bibliography

[§ Apt, K. R. (1999).
The essence of constraint propagation.
Theoretical Computer Science, 221.

[§ Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J.-F.
(1999).
Revisiting hull and box consistency.
In Proceedings of the 16th International Conference on Logic

Programming, pages 230—-244.

[§ Chabert, G. and Jaulin, L. (2009).
Contractor programming.
Artificial Intelligence, 173:1079-1100.

[§ Cousot, P. and Cousot, R. (1977).
Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints.
In Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming

Truchet-Miné Al and CP CPAIOR 2015 49/49

Bibliography

Languages, pages 238—252, Los Angeles, California. ACM Press,
New York, NY.

Cousot, P. and Cousot, R. (1992).
Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511-547.

Dechter, R., Meiri, |., and Pearl, J. (1989).

Temporal constraint networks.

In Proceedings of the 1st International Conference on Principles of
Knowledge Representation and Reasoning.

Granger, P. (1992).

Improving the results of static analyses of programs by local
decreasing iterations.

In Proceedings of the 12th Conference on Foundations of Software
Technology and Theoretical Computer Science.

Jeannet, B. and Miné, A. (2009).

Apron: A library of numerical abstract domains f%r static a}nalyﬁsis;)qG

Truchet-Miné Al and CP

In Proceedings of the 21th International Conference Computer
Aided Verification (CAV 2009), volume 5643 of Lecture Notes in
Computer Science, pages 661—-667. Springer.

Miné, A. (2006).
The octagon abstract domain.
Higher-Order and Symbolic Computation, 19(1):31-100.

=] = = E na
Truchet-Miné Al and CP

	Introduction
	AI
	CP

	Bringing AI ideas to CP
	Bringing CP ideas to AI
	Representing disjunctive information
	Iterations

	Analyzing Sound Processes with Constraints
	Conclusion

