Program Analysis and Constraint Programming

Joxan Jaffar

National University of Singapore

CPAIOR MasterClass, 18-19 May 2015

1/41

Program Testing, Verification, Analysis (TVA) ... VS ...

Satifiability/Optimization (SAT/OPT)

A trivial program whose input is values xi, x2, - - - , X, subject to constraints ¢;.
A feasible path is one where the corresponding contraints is satisfiable.
t =0

if (c1) t += a1 else t += (1 // «j,(; are constants
if (@) t += ap else t += [

if (c) t += a, else t += [,
assert(...something about t...)

» Testing: is there one feasible path resulting in t < 997
» Verification: do all feasible paths result in t < 997
> Analysis: which bound b is such that for all feasible paths, t < b?

In the context of general program reasoning, many added complexities:

» no (unbounded) loops
» no functions (in particular, no external/system calls)
> no “hard” (eg. nonlinear, recursive) constraints

2/41

Program Testing, Verification, Analysis (TVA) ... VS ...

Satifiability/Optimization (SAT/OPT)

To see that the above program reasoning is in fact hard,
model the problem in SAT/OPT:

Binary vars xi, x2, - - - , Xn, and natural number vars t;.
Feasibility Function: f(x1,x2, -, Xn)

f(xi, X2,y Xn)

to=0

ti=to+oa,t; =to+
x1—t=t else t=t]
h=t+ant] =t+
X2 >t =1t else th=1t)

t,/1 = th—1 + an, t{/ =th-1+ 5n
Xp — th=1t, else t, =1t

» SAT: Is the formula conjoined with t, < 99 satisfiable?
» SAT: Is the formula conjoined with t, > 99 UN-satisfiable?
» OPT: Find max value of t, such that the formula is true.

378

Instances of Classic SAT/OPT Problems

(0) t =0
(1) if () t += oy else t += (1 // «j,; are constants
(2) if (x) t += a2 else t += [,

(n) if (xp) t += an else t += (3,
assert(...something about t...)

» When g = 0 and the assertion is of the form t = =, it is instance of the
sum-of-subsets problem:
does a subset of {1, a2, ,an} sum to 7?7

» Considering program points as vertices and increments as edge-costs, it is
a variation of the Resource Constrainted Shortest Path (RCSP) problem

oy o, o,
W / Q\
By B, Bn

(Resource constraint is realized after associating costs with edges)

a/4

What's Special about (Traditional) Programs?

v

TVA is often a special kind of Satisfiability/Optimization (SAT/OPT)
problem

v

What's special about programs?

v

No global constraint(s)

> Dynamic conditions for feasibility (path-sensitivity)

> Dynamic condition for Optimality (context-sensitivity)

> Lots of other PL stuff (loops, system calls, dynamic code, ...)

v

Thus TVA is not often addressed with classic SAT/OPT algorithms

> Testing addressed with dynamic inputs, and now DART
> Verification addressed with Abstraction, and lately Interpolation
> Analysis is addressed with Extreme Abstraction (to be fast)

\4

This Talk:

> Overview of Symbolic Execution as basis for TVA
» Emphasis on Interpolation and Dynamic Programming as core technologies
> Can TVA techniques contribute to (some) general problems in SAT/OPT

5/41

Symbolic Execution

0 if (x > y) <PP, Symbolic store, Path cond>

153 X =% +y;
(3 y =% -y
ly X=x-y; (1, (z: X,y :Y), truef—
bs if (x -y >0 assume (x > y) assume (x < y)
le error();
. } 2,(z: X,y:Y), X >Y) (7, (z: X,y:Y), X <Y)
7 X 1= x +y
‘(3 (z: X+Y,y:Y), X > Y)‘
0y assume (x > y) (> L
12 X =X +y (3 Y .7}&,11, = —
6y =x-y 0 [4L,@: X+Yy:X),X>Y)
Uy X 1=X -y ls i
(s assume(x-y > 0) (g X=X~y

s assume(x-y < 0) ‘5 \(5 (:Y,y: X), X > Y}\—assumX =0
0 2 . : ‘

assume (x < y)

assume(x — y > 0)

(6,(z:Y,y: X), X>YAY - X >0)

(7. (z:Y,y: X),X>YAY - X <0)

6 /41

Symbolic Execution Tree and Interpolation

<0>t=0

<1> if (x<y) t+=10elset+=11
<2> if (y<z) t+=20elset+=22
<3> if (z<w)t+=30else t += 33

\\ //

(62 0 (e o (61 0 (64 o (63) (_65)

assert(t<99)

7/41

Symbolic Execution Tree with Infeasible Path

<0>t=0
<1> if (x<y)t+=10else t +=11
<2> if (y<z) t+=20 else t += 22
<3> if (z<x)t+=30else t +=33

[y<zAt566] (33
“ /7‘:\
/ \
/ AN
/ \
\,\,I // \\
¥ N
63 > (_ 65

assert(t<99)

8 /41

Symbolic Execution Tree and Reuse of Longest Path

Longest path in left subtree highlighted, reused in the right subtree

<0> t=0

<1> if (x<y)t+=10elset +=11
<2> if (y<z) t+=20else t += 22
<3> if (z<w)t+=30else t += 33

assert(t<99)

9/41

Symbolic Execution Tree and NO Reuse of Longest Path

Longest path in left subtree highlighted, NOT reusable in the right subtree

<0> t=0
<1> if (x<y)t+=10elset +=11
<2> if (y<z) t+=20else t += 22
<3> if (z<x)t+=30else t +=33

assert(t<99)

10 / 41

Symbolic Execution and Program Reasoning: A Summary

* Must not provide wrong information (soundness)
— True alarms should not be missed

e QOur goal: provide precise information
— Reduce false alarms
— Infeasible paths pose challenge

e “Path-sensitive” analyses are more precise
— Path-explosion

* There is need to perform efficient path-sensitive analyses

11/ 41

Symbolic Execution and Program Reasoning: A Summary

* Identical symbolic states
result in identical analyses
— Can merge and
— But very rare in practice

* Interpolation & Witness
paths
— Alternate conditions for
merging
— More likely in practice

— Potentially exponential
benefit!

SU1 =542 implies o¥l =02

12 /41

Merging Conditions

* Interpolant ¥

— Given an UNSAT formula AN,
interpolant w.r.t. Ais s.t. 4% and
WAL is UNSAT

— ¥ removes information from A4 not
relevant to the unsatisfiability of ANS

— Succinctly captures the reason for
infeasible paths in symbolic trees

* Witness paths w

— Set of paths in the sub-tree that
contribute to its analysis information

— Typically only a few paths in the sub-
tree

13 /41

Merging Conditions

* Theorem: If a new symbolic
state SU2 implies the
interpolant ¥ and all witness
paths w are feasible under
SU2 then by exploring S42
we would obtain exactly the
same analysis information as
before

* Merge SY2 with S/1

14 / 41

Merging Conditions

e If ¥ holds at .5¥2

— 742 will contain at least
those infeasible paths in
74

— 742 will contain at most
those feasible paths in 741

— g2 gl

* If wis feasible at .SY2

— 742 will contain at least \
the same analysis £ 3
information in 7¥1 ‘

(7] 7]
— gl Egl2 T (0d1) T2 (a42)

15 / 41

A Side Application of Symbolic Execution with Interpolation: Tree Slicing

Motivation

* Given a program location | and a variable x, find subset
of code that affects the value of x at |

— Software testing/debugging, optimization, verification...

if (c¢c) p = 1; else p = 0;
x = 0;

if (p > 0) x = 1; P‘P’ if (lc) z = 1;
if (x == 0) z = 1;
TARGET (z)

* No static slicing is effective on P
— But it is equivalent to P’ wrt target z
— Analysis of P’ is clearly easier
* Novel concept introduced: Tree Slicing

16 / 41

Tree Slicing

Motivation

= 0;
Path-sensitive
if (p > 0) x = 1;
if (x == 0) z = 1; expansion
TARGET (z)
if (c) { } Slicing
else {z=1; }
Post
processing

if (!c) z = 1;

17 /41

Tree Slicing

Why does this work?

* Slicing a program fragment is more effective
when there is path-sensitivity

* In general symbolic execution displays path-
sensitivity as it unfolds the path leading to the
fragment

* But path-sensitivity may not always be useful!
Example...

18 / 41

Tree Slicing

When does this not work?

if (¢) p =1; else p = 0; if
Program Fragment

where all values of z P ‘ P}
are unaffacted by p

else { p = 0;

TARGET (z) }

TARGET (z)

P’ is effectively twice the size of P but there is

no benefit from the duplication due to path-
sensitivity

Worse: full path-sensitivity is intractable!

19 /41

Tree Slicing

What is the solution?

* Some form of merging
— At every merge point: original CFG
— Not at all: full SE tree (intractable)

* Exactly when path-sensitivity is no longer
useful for slicing

* Path-Sensitively Sliced CFG (PSSCFG)

20/ 41

Tree Slicing

Methodology

* Symbolically execute the
program generating SE tree
and computing dependencies
for slicing

* Merge states if it does not
cause loss of slicing
(dependency) information
— How to detect this?

— Merging conditions — interpolant
& witness paths

21/ 41

Tree Slicing

Tree Slicing

* Once SE tree is generated, apply slicing on the
tree itself instead of on program statements

— Rules are similar to traditional slicing using
dependency sets

— Must also consider infeasible paths and contexts in
the tree (example soon)

* Advantage: the same program fragment can be
sliced from one part of the tree but not another
— Not applicable to static slicing!

22 /41

Tree Slicing

Example: generate SE tree

if (read(c)) flag=1
else flag=0

x=2

if (read(d)) y=4
else y=5

if (flag) z=y+x
else z=x+1

TARGET (z)

cNflag=1Ax=2
A=dAy=5

= z=y+
Sflag=1

23 /41

Tree Slicing

Example: apply Tree Slicing

if (read(c)) flag=1
else flag=0

x=2

if (read(d)) y=4
else y=5

if (flag) z=y+x
else z=x+1

TARGET (z)

24 /41

Tree Slicing

Example: “decompile” to C

if (read(c)) flag=1 if (read(c)) {
else flag=0 x=2
x=2 if (read(d))
if (read(d)) y=4 x=2 y=4
else y=5 else
if (flag) z=y+x y=5
else z=x+1 Z=y+x
TARGET (z) }
y=4 else {
x=2
Z=X+1

}

25 /41

Tree Slicing

Example: benefits of PSSCFG

P p’ * Faster verification and
if (read(c)) flag=1 if(read(c)) { analysis
1 rea (¢} ag= 1 rea C
else flag=0 x=2 - Les.s # of paths/
x=2 if (read(d)) variables .
if (read(d)) y=4 y=4 * Less constraint solving
else y=5 else for concolic testing
if (flag) z=y+x y=5 — onP, always
else z=x+1 Z=y+X generates values for c
TARGET (z) } and d
elsfz{ — on P’, generates d
*= only if ¢ was non-zero
z=X+1

}
* Completely off-the-
shelf transformation!

26 / 41

Tree Slicing

Experiments

Benchmark Lines of code Blow | PSS

Orig | St.slice | PSS up | Time
cdaudio 1817 1599 | 4452 2.78 24s
diskperf 937 706 | 2967 4.20 18s
floppy 1005 766 | 2086 | 2.72 7s
floppy2 1513 1250 | 3507 | 2.81 | 16s
kbfiltr 549 275 170 0.62 1s
kbfiltr2 782 492 410 0.83 1s
tcas 286 227 311 1.37 2s

* Implemented on TRACER symbolic execution
framework

* Manageable blow-up and generation time of PSSCFG
— Compared with static slice from Frama-C

27/ 41

Tree Slicing

Experiments

» Off-the-shelf concolic tester CREST gains 3.1
times speed-up (24 hrs vs 8 hrs)

Benchmark Testing Time Speed || #Solver calls
St.slice | PSS up || St.slice | PSS
cdaudio 1m30s 43s 2.1 16k 7k
diskperf 900m 34m 26.5 26mil [1mil
floppy 9m6s 24s 22.8 260k 4k
floppy2 525m | 429m 1.2 613k | 479k
kbfiltr 2s Is 2 63 52
kbfiltr2 22s 6s 3.7 7k 2k
tcas 4s Is 4 1.5k 188
[23h56m | 7hddm|(] 3.1 []26.9mil | 1.5mil |

28 / 41

Tree Slicing

Experiments

* Off-the-shelf verifiers gain 1.5 to 5.8 times
speedup
— ARMC unable to termlnate on original program

IMPACT

CPA-CHECKER

Benchmark | Verification Time | [Speed Vermcatlon T|me Speed | Verification Time [[Speed
St.Slice PSS up | St.Slice PSS up | St.Slice PSS up

cdaudio 955 14s 6.8 T/O 21s N/A 26s 14s 1.86
diskperf 146s 18s 8.1 T/O 6s N/A Ts 6s 1.17
floppy 34s 8s 43 2595 6s || 43.17 6s 55 1.20
floppy2 39s 13s 3.0 T/O 17s N/A 10s 8s 1.25
Kkbfiltr 4s Is 4.0 3s Is 3.00 3s 2s 1.50
kbfiltr2 8s 2s 4.0 13s 2s 6.50 4s 2s 2.00
tcas 3s Is 3.0 3s Is 3.00 2s Is 2.00
329s 57s 5.8 T/O 5ds N/A 58s 38s 1.53

29 /41

The TRACER framework

» Compiles LLVM and C into CLP(R) transitions
» Performs depth-first symbolic execution with interpolation
» Performs Two Kinds of Speculation

> Applied to Testing, Verification and Analysis (WCET, Var Dependency,
Taint)

» For WCET, (a) loops, (b) cache

» Ongoing work: (a) explicit heaps, frame rule, recursive definitions (b)
String constraints and directed testing of web programs

30 /41

Comparison with Al and CEGAR

> Uses a priori abstraction

v

Often fails to verify (counterexample), so refinement is needed

> A refinement is a new abstract domain, applied globally in the next
iteration

» An iterations agnostic to previous iterations

31/41

Comparison with Classic Hoare Verification

> Weakest precondition based

> Generates a tree (like Sym Exec) preconditions, exponential in size
» Advantage: focus only on relevant variables and properties

» Disadvantage 1: ignores preconditions

> Disadvantage 2: not amenable to abstraction, the standard mechanism for
reducting search space in verification (eg: loop invariants)

» Currently only used in niche full-function verifiers (eg: Daphny)

32/41

Comparison with SMT

» Represents disjunctions of constraints as boolean vars

> Uses constraint solver with interpolation for conjunctions, working a DPLL
process for the booleans

» The constraint solver is aware only of one decision chain of the booleans
at any one time

» For representing symbolic execution, no loops

» Huge advantage: easy to deploy as a black box

33741

Comparison with Concolic Testing

v

Concolic = Concretization (dynamization) + Directed (selected
backtracking)

v

Concolic Testing depends on “Pure Dumb Luck” (PDL)
> No exploitation of interpolation for potentially exponential reduction

» Huge advantage: “difficult code” like unbounded loops, nonlinear
constraints, system functions

34 /41

Part Il: Incremental Analysis

» Stop anytime with sound analysis
> Progressively improve with increased budget

» Can often terminate early

35 /41

Hybrid Symbolic Execution Tree

» HSET = SET but some subtrees replaced by an abstract node @
» Each abstract node has upper bound analysis (eg. indicated by “u")
» Other nodes may have a lower bound analysis (eg. indicated by “I")

@<1> [6]”

36 /41

Refining a HSET

» The upper bound can efficiently computed (traditional Abstract
Interpretation)

> The upper bound is represented by a witness path

» However, the witness may be spurious

» If not spurious, refine the HSET by keeping the path and abstracting the
offshoots of the path as needed.

37 /41

Refining a HSET (2)

» Domination: ignore subtrees whose upper bound does not exceed all lower

bounds
> Goal directed choice: always choose a non-dominated abstract node to

refine

» Customized termination: Stop when (all) upper bound is close enough to
the lower

» Early termination: Obtain exact analysis when lower and upper bounds
meet

38 /41

Benchmarks

Benchmark #V Al Full SE Incremental

TV # TV Time Mem #I1Vy #1V Time Mem
cdaudio 1288 10663 9370 28's 212 MB 9370 9370 14s 56 MB
diskperf 1255 33598 oo oo 2 GB 29723 29723 231s 400 MB
floppy 1524 16627 13784 19s 136 MB 13784 13784 15s 44 MB
ssh 2213 12394 6075 17s 39 MB 6075 6075 17s 51 MB
nsichneu 2540 206788 [eS) oo 522 MB 52430 52430 156 s 133 MB
tcas 235 29305 oo oo 1.4 GB 28788 23887 oo 432 MB
statemate 1187 31281 o 285 s 0o 31151 18623 oo 767 MB

Table : WCET Analysis results for Al based, SE based, and our incremental algorithm.
oo means timeout or out-of-memory.

Benchmark #V Al Full SE Incremental

TV # TV Time Mem #1Vy #1V Time Mem
cdaudio 330 50 oo oo 574 MB 45 45 17s 227 MB
diskperf 185 36 oo oo 425 MB 31 31 s 101 MB
floppy 330 27 oo oo 581 MB 20 20 12s 229 MB
ssh 63 57 53 1s 8 MB 53 53 1s 8 MB
nsichneu 22 16 16 4s 24 MB 16 16 2s 11 MB
tcas 41 15 15 4s 55 MB 15 15 1s 12 MB
statemate 119 67 o oo 770 MB 63 63 7s 79 MB

Table : Taint Analysis results. # TV measures the number of tainted variables.

39 /41

Conclusion

» Verification, by exhaustive search over Symbolic Execution Tree, is akin to
SAT

> Analysis of a Symbolic Execution Tree is a form of an OPT problem

» TVA techniques cannot directly use SAT/OPT methods,
but use specialized methods (interpolation, witnesses, spines, ...)

» Some SAT/OPT problems can be FORMULATED as a TVA problem

» The specialized methods for TVA the offers solutions to certain
SAT/OPT problems

40/ 41

References

» Joxan Jaffar, Andrew Santosa and Razvan Voicu, Efficient Memoization
for Dynamic Programming with Adhoc Constraints, AAAI'08

> Joxan Jaffar, Andrew Santosa and Razvan Voicu, An Interpolation Method
for CLP traversal, CP’09.
(See also McMillan, CAV'10 and CAV'14, who calls this algorithm Lazy
Annotations)

> Joxan Jaffar, Vijayaraghavan Murali, Jorge Navas and Andrew Santosa,
TRACER: A Symbolic Execution Tool for Verification, CAV'2012

» Joxan Jaffar and Vijayaraghavan Murali, A Path-Sensitively Sliced Control
Flow Graph, FSE'2014

41 /41

