
Program Analysis and Constraint Programming

Joxan Jaffar

National University of Singapore

CPAIOR MasterClass, 18-19 May 2015

1 / 41

Program Testing, Verification, Analysis (TVA) ... VS ...
Satifiability/Optimization (SAT/OPT)

A trivial program whose input is values x1, x2, · · · , xn subject to constraints ci .
A feasible path is one where the corresponding contraints is satisfiable.

t = 0

if (c1) t += α1 else t += β1 // αi , βj are constants

if (c2) t += α2 else t += β2

...

if (cn) t += αn else t += βn
assert(...something about t...)

I Testing: is there one feasible path resulting in t ≤ 99?

I Verification: do all feasible paths result in t ≤ 99?

I Analysis: which bound b is such that for all feasible paths, t ≤ b?

In the context of general program reasoning, many added complexities:

I no (unbounded) loops
I no functions (in particular, no external/system calls)
I no “hard” (eg. nonlinear, recursive) constraints

2 / 41

Program Testing, Verification, Analysis (TVA) ... VS ...
Satifiability/Optimization (SAT/OPT)

To see that the above program reasoning is in fact hard,
model the problem in SAT/OPT:

Binary vars x1, x2, · · · , xn, and natural number vars ti .
Feasibility Function: f (x1, x2, · · · , xn)

f (x1, x2, · · · , xn)
t0 = 0
t′1 = t0 + α1, t

′′
1 = t0 + β1

x1 → t1 = t′1 else t = t′′1
t′2 = t1 + α2, t

′′
1 = t1 + β2

x2 → t2 = t′2 else t2 = t′′2
· · ·
t′n = tn−1 + αn, t

′′
1 = tn−1 + βn

xn → tn = t′n else tn = t′′n

I SAT: Is the formula conjoined with tn ≤ 99 satisfiable?
I SAT: Is the formula conjoined with tn > 99 UN-satisfiable?
I OPT: Find max value of tn such that the formula is true.

3 / 41

Instances of Classic SAT/OPT Problems

〈0〉 t = 0

〈1〉 if (x1) t += α1 else t += β1 // αi , βj are constants

〈2〉 if (x2) t += α2 else t += β2

...

〈n〉 if (xn) t += αn else t += βn
assert(...something about t...)

I When βi = 0 and the assertion is of the form t = γ, it is instance of the
sum-of-subsets problem:

does a subset of {α1, α2, · · · , αn} sum to γ?

I Considering program points as vertices and increments as edge-costs, it is
a variation of the Resource Constrainted Shortest Path (RCSP) problem

1	

α1	 α2	

β1	 βn	 β2	

αn	 ...	

...	

2	 n	 3	

(Resource constraint is realized after associating costs with edges)

4 / 41

What’s Special about (Traditional) Programs?

I TVA is often a special kind of Satisfiability/Optimization (SAT/OPT)
problem

I What’s special about programs?

I No global constraint(s)
I Dynamic conditions for feasibility (path-sensitivity)
I Dynamic condition for Optimality (context-sensitivity)
I Lots of other PL stuff (loops, system calls, dynamic code, ...)

I Thus TVA is not often addressed with classic SAT/OPT algorithms

I Testing addressed with dynamic inputs, and now DART
I Verification addressed with Abstraction, and lately Interpolation
I Analysis is addressed with Extreme Abstraction (to be fast)

I This Talk:

I Overview of Symbolic Execution as basis for TVA
I Emphasis on Interpolation and Dynamic Programming as core technologies
I Can TVA techniques contribute to (some) general problems in SAT/OPT

5 / 41

Symbolic Execution

6 / 41

Symbolic Execution Tree and Interpolation

7 / 41

Symbolic Execution Tree with Infeasible Path

8 / 41

Symbolic Execution Tree and Reuse of Longest Path

Longest path in left subtree highlighted, reused in the right subtree

9 / 41

Symbolic Execution Tree and NO Reuse of Longest Path

Longest path in left subtree highlighted, NOT reusable in the right subtree

10 / 41

Symbolic Execution and Program Reasoning: A Summary

11 / 41

Symbolic Execution and Program Reasoning: A Summary

12 / 41

Merging Conditions

13 / 41

Merging Conditions

14 / 41

Merging Conditions

15 / 41

A Side Application of Symbolic Execution with Interpolation: Tree Slicing

16 / 41

Tree Slicing

17 / 41

Tree Slicing

18 / 41

Tree Slicing

19 / 41

Tree Slicing

20 / 41

Tree Slicing

21 / 41

Tree Slicing

22 / 41

Tree Slicing

23 / 41

Tree Slicing

24 / 41

Tree Slicing

25 / 41

Tree Slicing

26 / 41

Tree Slicing

27 / 41

Tree Slicing

28 / 41

Tree Slicing

29 / 41

The TRACER framework

I Compiles LLVM and C into CLP(R) transitions

I Performs depth-first symbolic execution with interpolation

I Performs Two Kinds of Speculation

I Applied to Testing, Verification and Analysis (WCET, Var Dependency,
Taint)

I For WCET, (a) loops, (b) cache

I Ongoing work: (a) explicit heaps, frame rule, recursive definitions (b)
String constraints and directed testing of web programs

30 / 41

Comparison with AI and CEGAR

I Uses a priori abstraction

I Often fails to verify (counterexample), so refinement is needed

I A refinement is a new abstract domain, applied globally in the next
iteration

I An iterations agnostic to previous iterations

31 / 41

Comparison with Classic Hoare Verification

I Weakest precondition based

I Generates a tree (like Sym Exec) preconditions, exponential in size

I Advantage: focus only on relevant variables and properties

I Disadvantage 1: ignores preconditions

I Disadvantage 2: not amenable to abstraction, the standard mechanism for
reducting search space in verification (eg: loop invariants)

I Currently only used in niche full-function verifiers (eg: Daphny)

32 / 41

Comparison with SMT

I Represents disjunctions of constraints as boolean vars

I Uses constraint solver with interpolation for conjunctions, working a DPLL
process for the booleans

I The constraint solver is aware only of one decision chain of the booleans
at any one time

I For representing symbolic execution, no loops

I Huge advantage: easy to deploy as a black box

33 / 41

Comparison with Concolic Testing

I Concolic = Concretization (dynamization) + Directed (selected
backtracking)

I Concolic Testing depends on “Pure Dumb Luck” (PDL)

I No exploitation of interpolation for potentially exponential reduction

I Huge advantage: “difficult code” like unbounded loops, nonlinear
constraints, system functions

34 / 41

Part II: Incremental Analysis

I Stop anytime with sound analysis

I Progressively improve with increased budget

I Can often terminate early

35 / 41

Hybrid Symbolic Execution Tree

I HSET = SET but some subtrees replaced by an abstract node @
I Each abstract node has upper bound analysis (eg. indicated by “u”)
I Other nodes may have a lower bound analysis (eg. indicated by “l”)

36 / 41

Refining a HSET

I The upper bound can efficiently computed (traditional Abstract
Interpretation)

I The upper bound is represented by a witness path
I However, the witness may be spurious
I If not spurious, refine the HSET by keeping the path and abstracting the

offshoots of the path as needed.

37 / 41

Refining a HSET (2)

I Domination: ignore subtrees whose upper bound does not exceed all lower
bounds

I Goal directed choice: always choose a non-dominated abstract node to
refine

I Customized termination: Stop when (all) upper bound is close enough to
the lower

I Early termination: Obtain exact analysis when lower and upper bounds
meet

38 / 41

Benchmarks

Benchmark # V AI Full SE Incremental
TV # TV Time Mem #TVU #TVL Time Mem

cdaudio 1288 10663 9370 28 s 212 MB 9370 9370 14 s 56 MB
diskperf 1255 33598 ∞ ∞ 2 GB 29723 29723 231 s 400 MB
floppy 1524 16627 13784 19 s 136 MB 13784 13784 15 s 44 MB
ssh 2213 12394 6075 17 s 39 MB 6075 6075 17 s 51 MB
nsichneu 2540 206788 ∞ ∞ 522 MB 52430 52430 156 s 133 MB
tcas 235 29305 ∞ ∞ 1.4 GB 28788 23887 ∞ 432 MB
statemate 1187 31281 ∞ 285 s ∞ 31151 18623 ∞ 767 MB

Table : WCET Analysis results for AI based, SE based, and our incremental algorithm.
∞ means timeout or out-of-memory.

Benchmark # V AI Full SE Incremental
TV # TV Time Mem #TVU #TVL Time Mem

cdaudio 330 50 ∞ ∞ 574 MB 45 45 17 s 227 MB
diskperf 185 36 ∞ ∞ 425 MB 31 31 7 s 101 MB
floppy 330 27 ∞ ∞ 581 MB 20 20 12 s 229 MB
ssh 63 57 53 1 s 8 MB 53 53 1 s 8 MB
nsichneu 22 16 16 4 s 24 MB 16 16 2 s 11 MB
tcas 41 15 15 4 s 55 MB 15 15 1 s 12 MB
statemate 119 67 ∞ ∞ 770 MB 63 63 7 s 79 MB

Table : Taint Analysis results. # TV measures the number of tainted variables.

39 / 41

Conclusion

I Verification, by exhaustive search over Symbolic Execution Tree, is akin to
SAT

I Analysis of a Symbolic Execution Tree is a form of an OPT problem

I TVA techniques cannot directly use SAT/OPT methods,
but use specialized methods (interpolation, witnesses, spines, ...)

I Some SAT/OPT problems can be FORMULATED as a TVA problem

I The specialized methods for TVA the offers new solutions to certain
SAT/OPT problems

40 / 41

References

I Joxan Jaffar, Andrew Santosa and Razvan Voicu, Efficient Memoization
for Dynamic Programming with Adhoc Constraints, AAAI’08

I Joxan Jaffar, Andrew Santosa and Razvan Voicu, An Interpolation Method
for CLP traversal, CP’09.
(See also McMillan, CAV’10 and CAV’14, who calls this algorithm Lazy
Annotations)

I Joxan Jaffar, Vijayaraghavan Murali, Jorge Navas and Andrew Santosa,
TRACER: A Symbolic Execution Tool for Verification, CAV’2012

I Joxan Jaffar and Vijayaraghavan Murali, A Path-Sensitively Sliced Control
Flow Graph, FSE’2014

41 / 41

