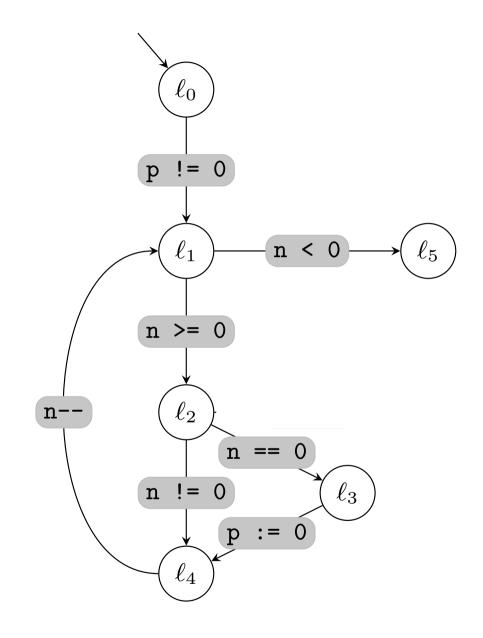
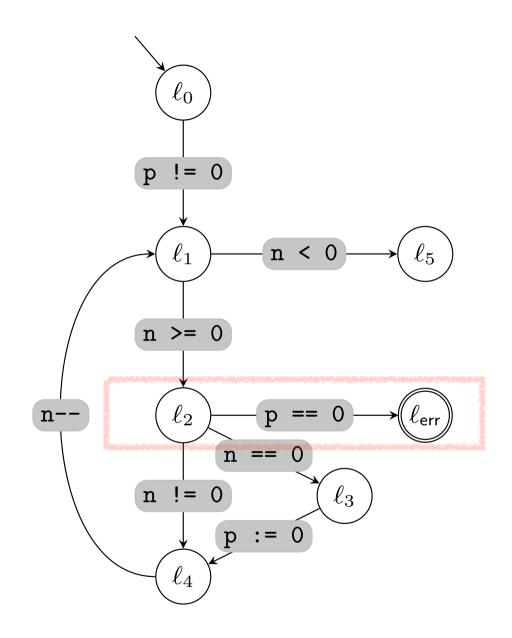
Search Modulo Theory

Andreas Podelski University of Freiburg

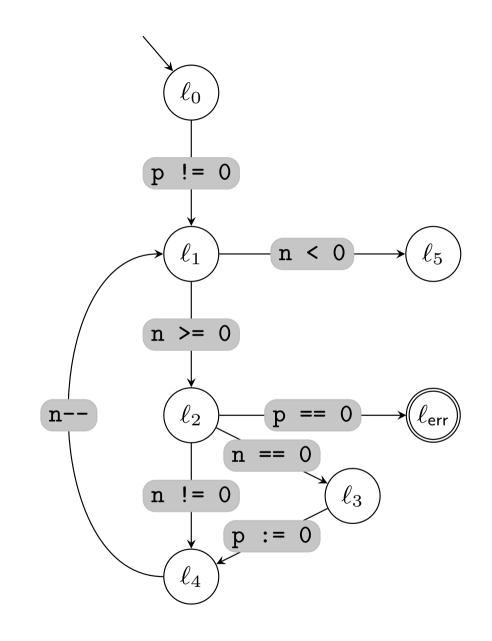
```
\ell_0: assume p != 0;
\ell_1: while (n >= 0)
\ell_2:
          if(n == 0)
\ell_3:
\ell_4:
\ell_5:
```



```
\ell_0: assume p != 0;
\ell_1: while (n >= 0)
      assert p != 0;
\ell_2:
        if(n == 0)
\ell_3:
\ell_4:
\ell_5:
```



```
\ell_0: assume p != 0;
\ell_1: while (n >= 0)
\ell_2: assert p != 0;
        if(n == 0)
      p := 0;
\ell_3:
\ell_4:
\ell_5:
```



no execution violates assertion = no execution reaches error location

path in infinite state space of program: feasible path in finite control flow graph

infinite search space:

symbolically by finite graph
(edges labeled by constraints and updates)

path in infinite search space: feasible path in finite graph

feasibility = Satisfiability Modulo Theory (SMT)

infeasible trace

unsatisfiable formula

$$x == 1 ; x == -1 ;$$

$$x = 1 \land x = -1$$

infeasible/unsatisfiable ... Modulo Theory

infeasible trace

unsatisfiable Modulo Theory

$$x == 1 ; x == -1 ;$$

$$x = 1 \land x = -1$$

$$x := 1 ; x == -1 ;$$

$$x' = 1 \ \land \ x' = -1$$

Automated Program Verification

Andreas Podelski University of Freiburg

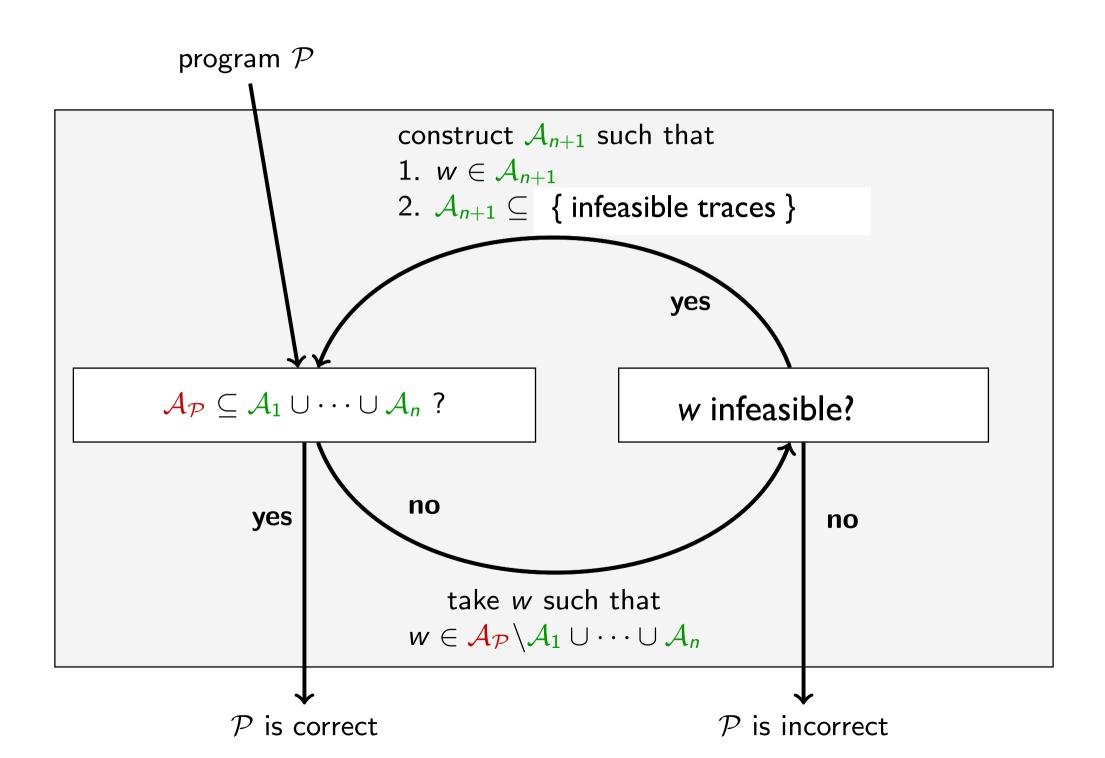
Joint work with

Matthias Heizmann and Jochen Hoenicke
University of Freiburg

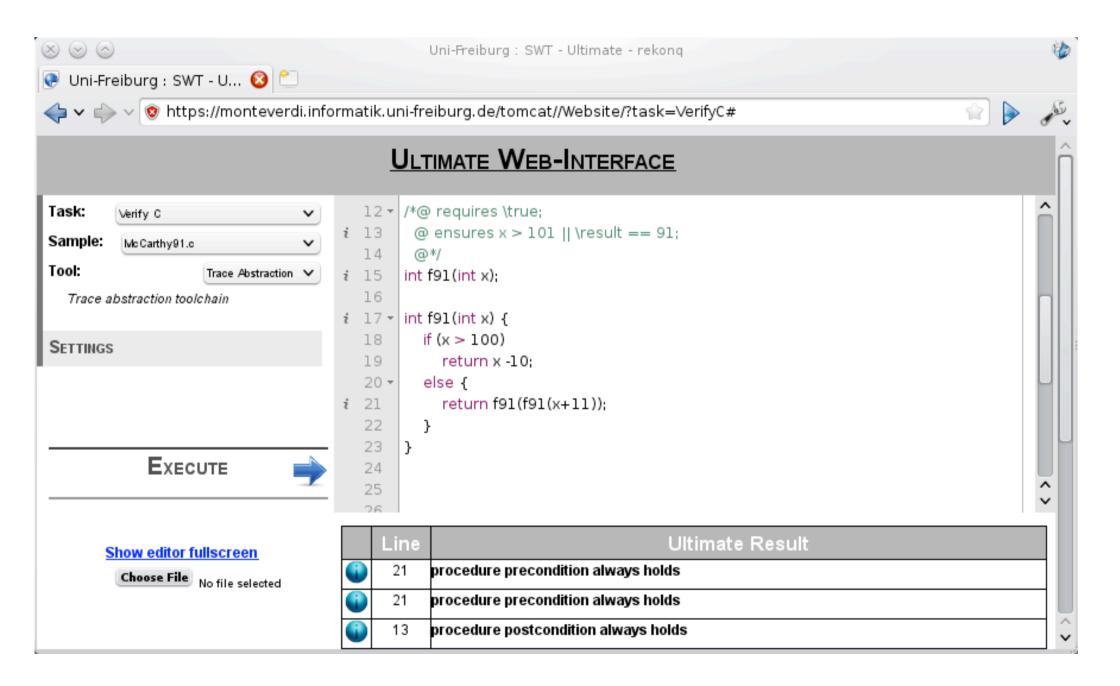
Azadeh Farzan and Zachary Kincaid
University of Toronto

automaton |ô'tämətən|

automation | âtə māSHən|



Ultimate Automizer



program = automaton

constructed from proof

proof by SMT solver

search Modulo Theory

add lemmas to prune the search space lemmas inferred from proofs of SMT solver

SMT: Satisfiability Modulo Theory

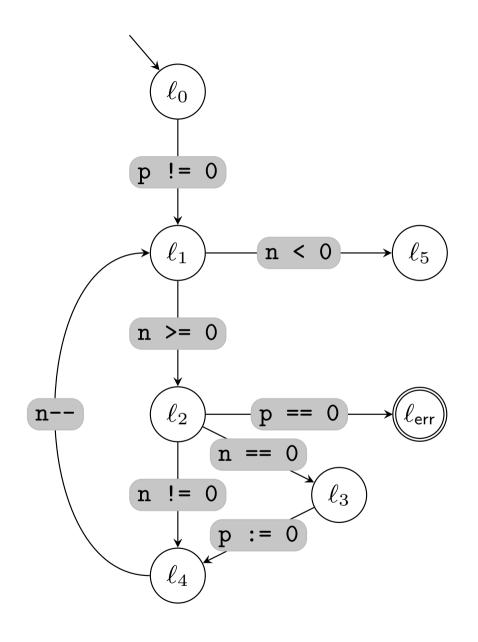
search Modulo Theory

add lemmas to prune the search space lemmas inferred from proofs of SMT solver

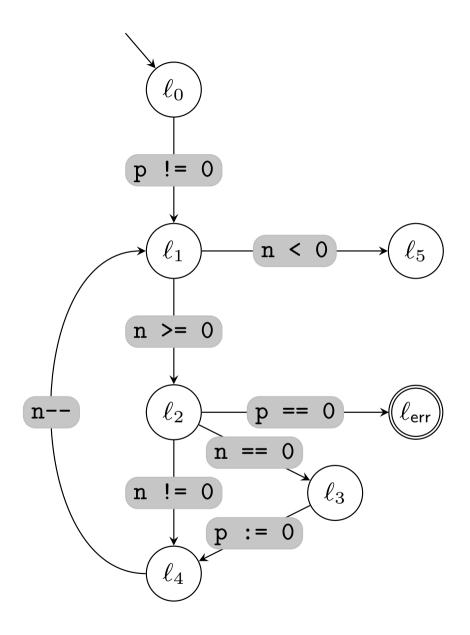
lemmas are automata (sets of paths) automata constructed from proofs of SMT solver

SMT: Satisfiability Modulo Theory

error trace: sequence of statements along path to error location

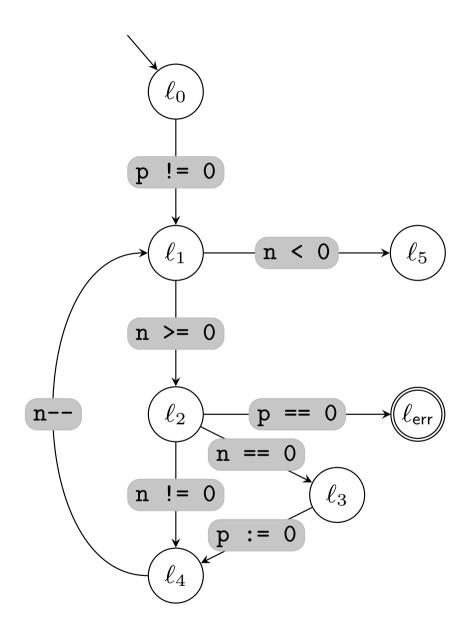


error trace: sequence of statements along path to error location

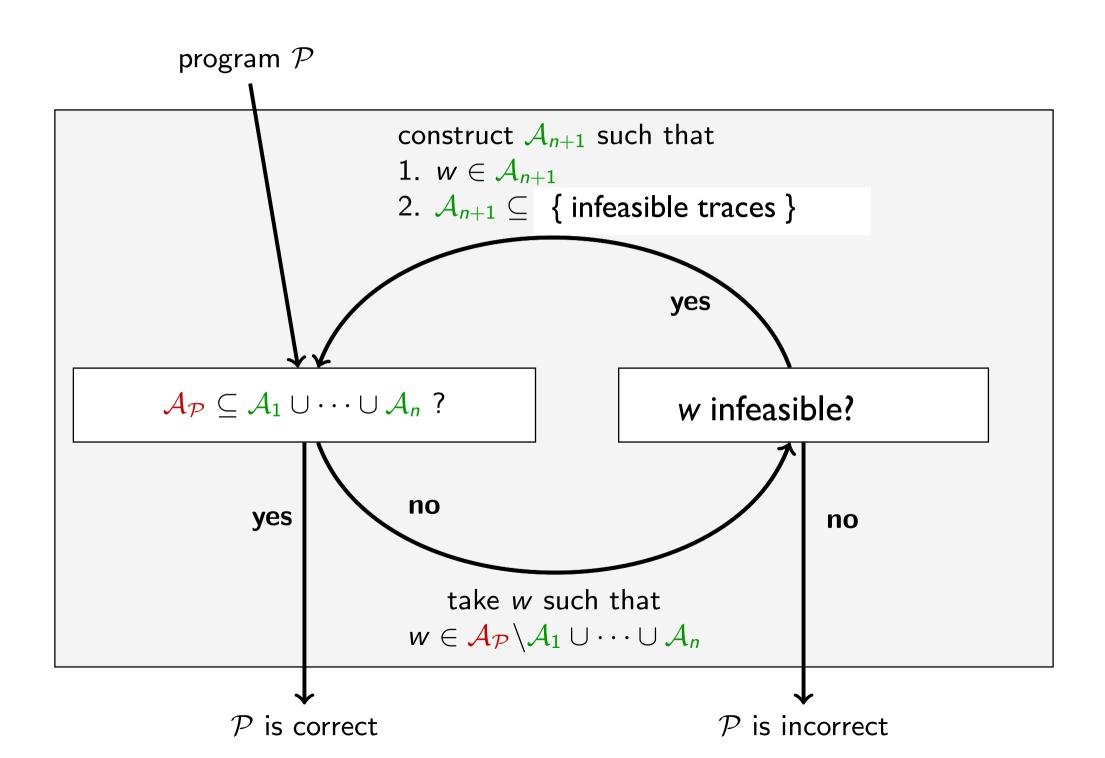


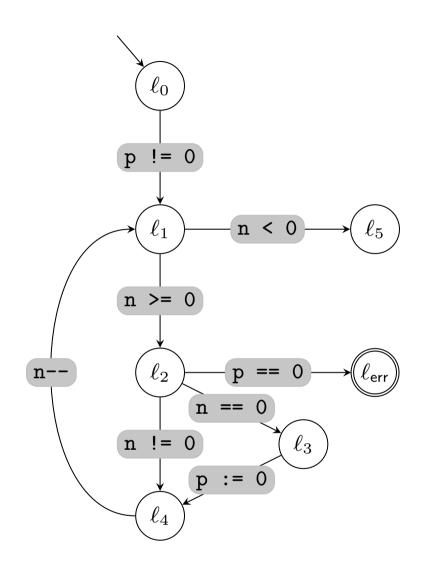
error trace: word accepted by **program automaton**

program correct = no execution reaches error location



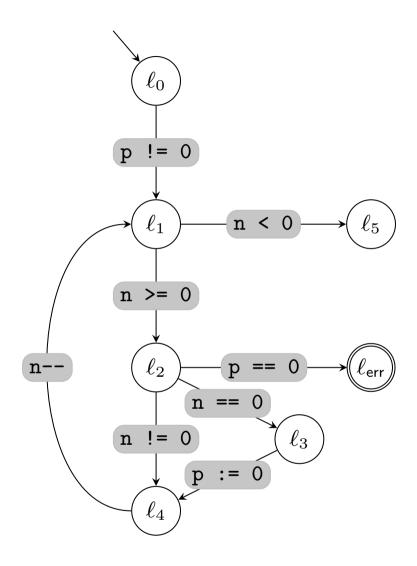
program correct = no feasible error trace



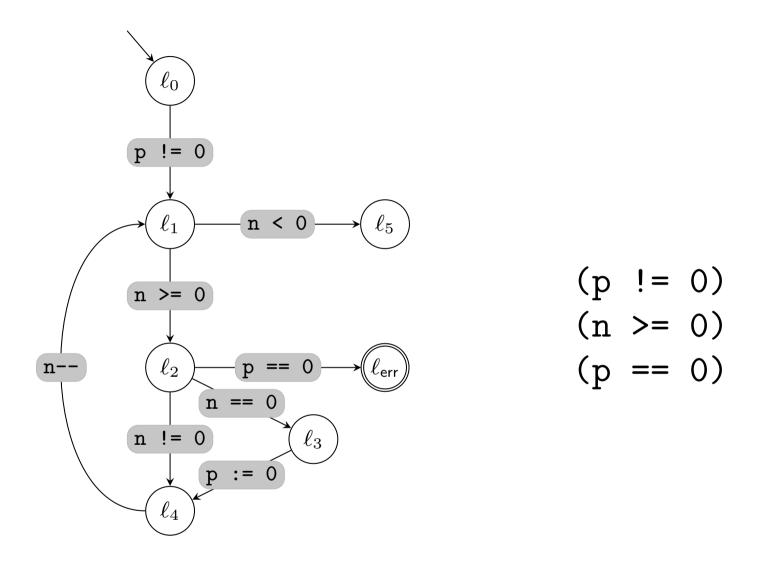


Does there exist an execution that leads to error state?

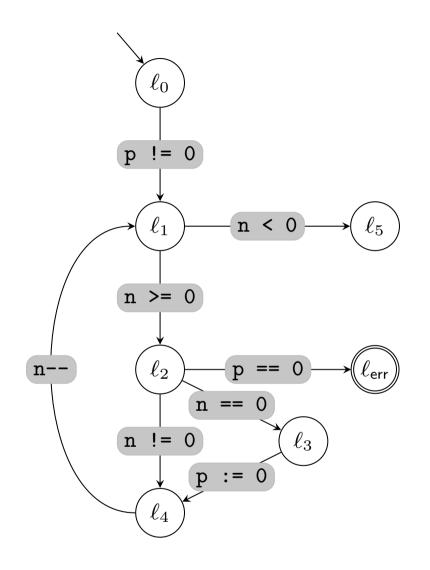
Does there exist a feasible error trace?



complex control? - just ignore it!



error trace: sequence of statements along an error path

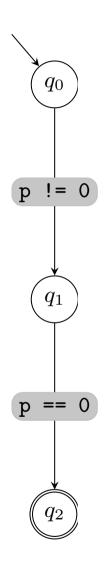


$$(p != 0)$$
 $(p != 0)$
 $(n >= 0)$ $(p == 0)$

$$(b \mid = 0)$$

$$(p==0)$$

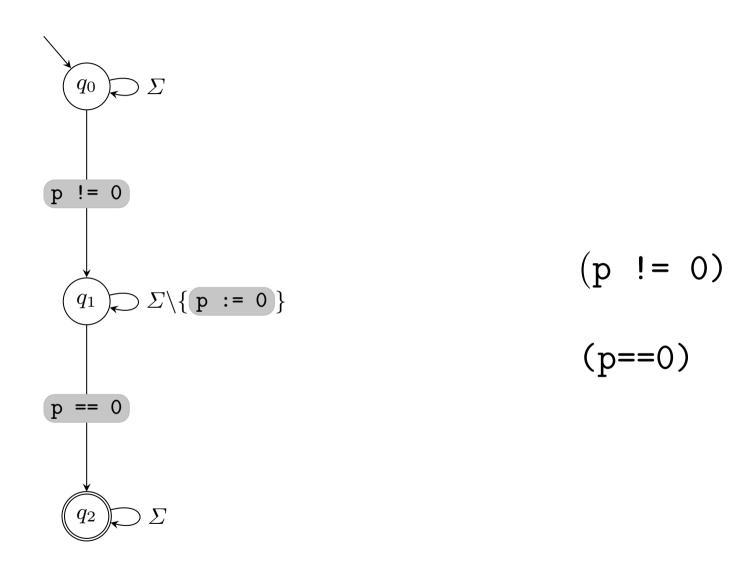
unsatisfiable core



$$(b \mid = 0)$$

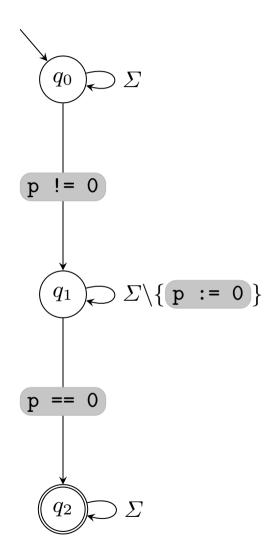
$$(p==0)$$

construct automaton from unsatisfiable core (step 1)

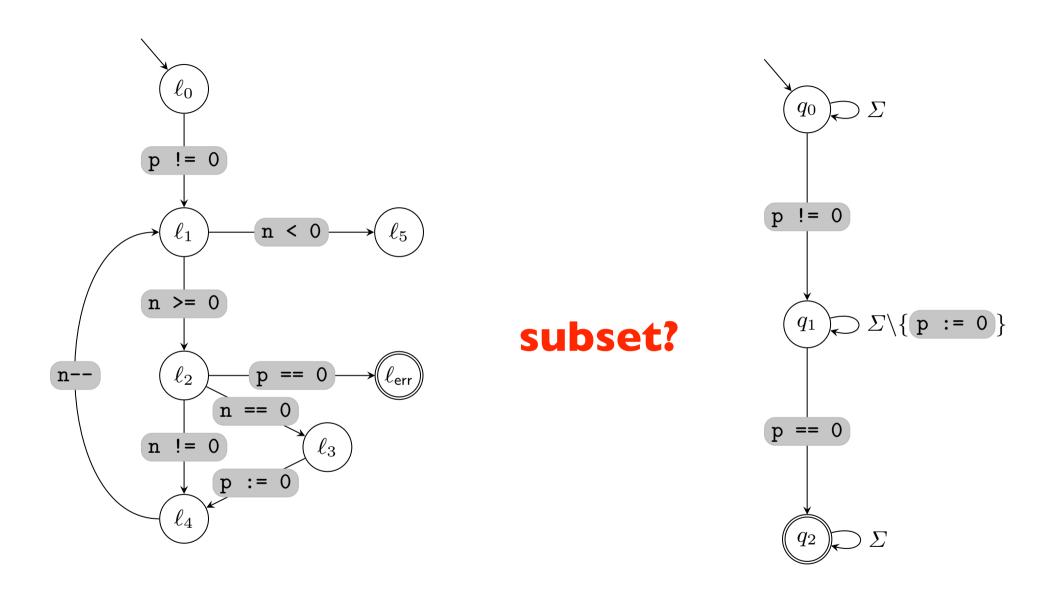


construct automaton from unsatisfiable core (step 2)

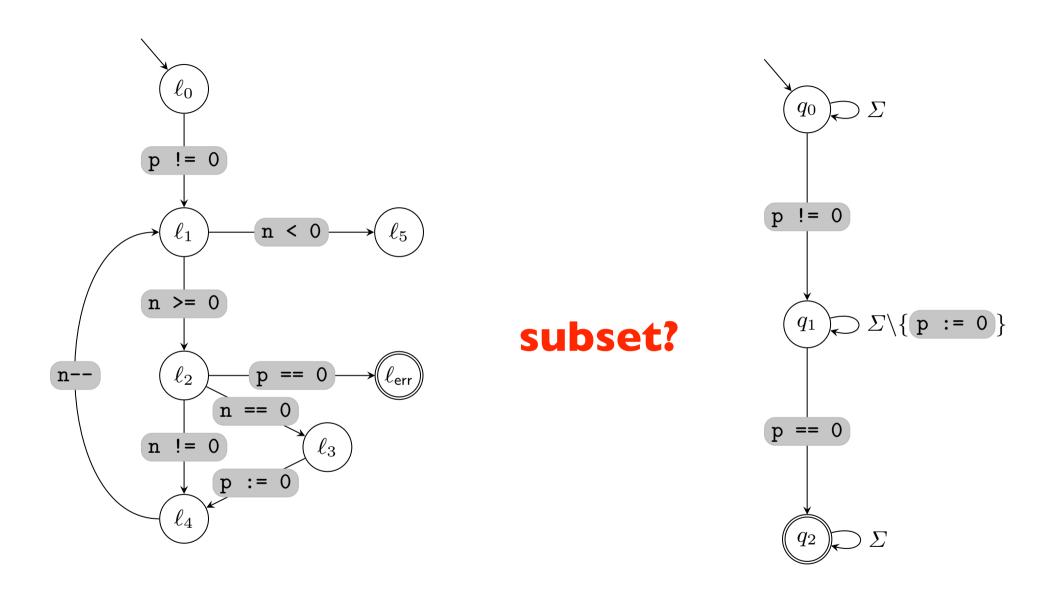
automaton constructed from unsatisfiability proof



"data automaton" (ignores control of program)



program automaton subset of data automaton?



program automaton **not** subset of data automaton

ℓ_0 p != 0 n < 0 n >= 0 nn == 0n != 0 ℓ_3 p := 0

new error trace

$$(p != 0)$$

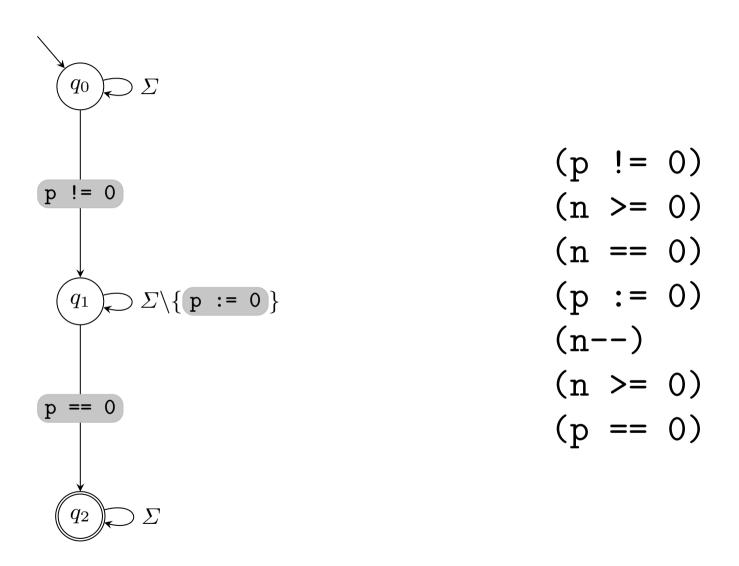
$$(n >= 0)$$

$$(n == 0)$$

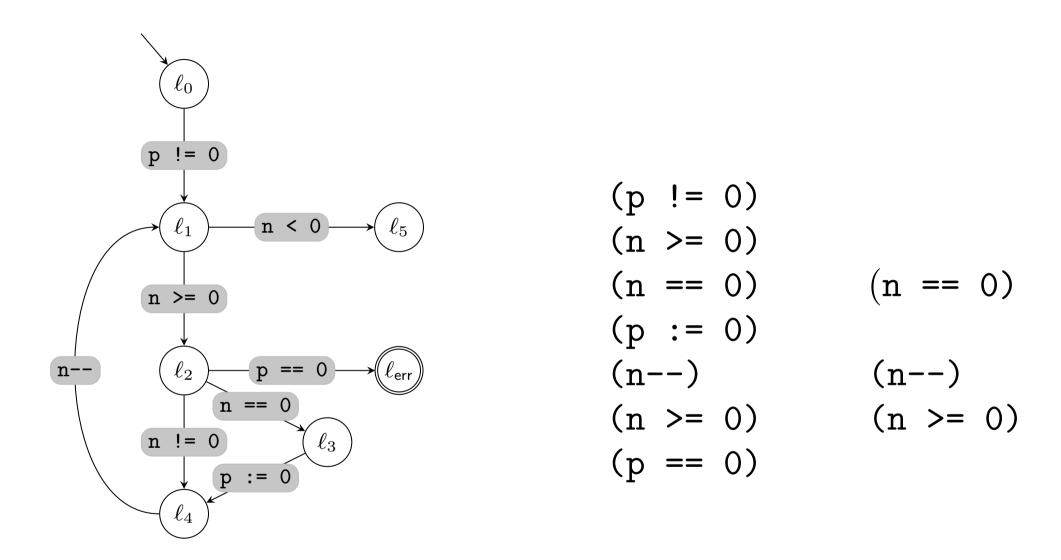
$$(p := 0)$$

$$(n >= 0)$$

$$(p == 0)$$



data automaton does not accept new error trace

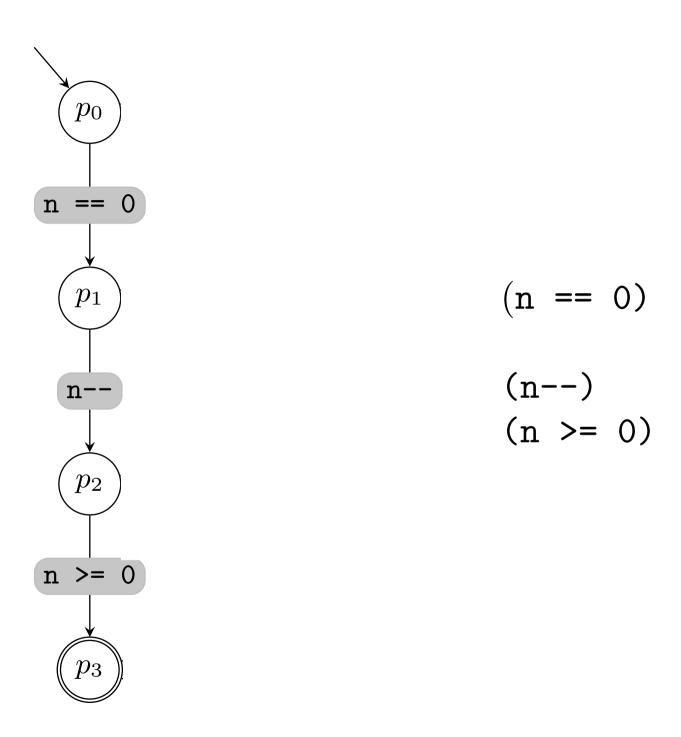


trace infeasible, take unsatisfiable core

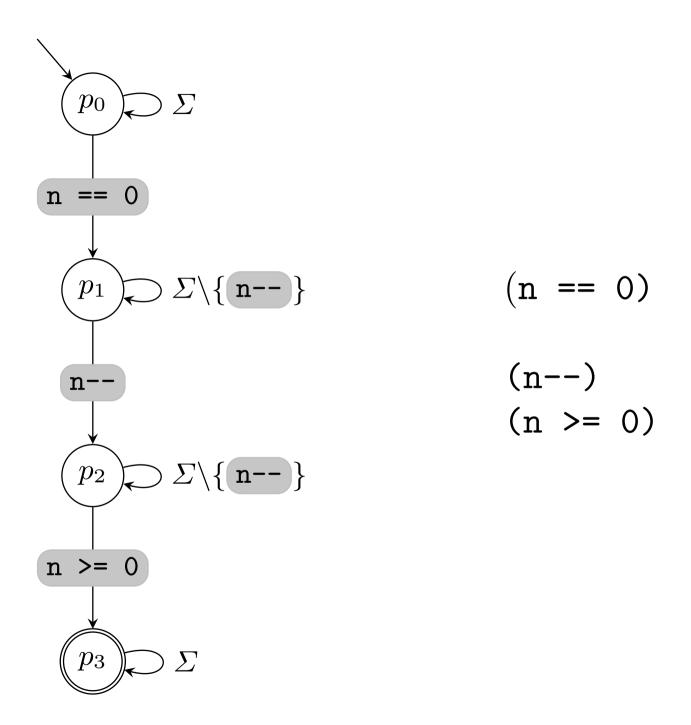
$$(n == 0)$$

$$(n--)$$

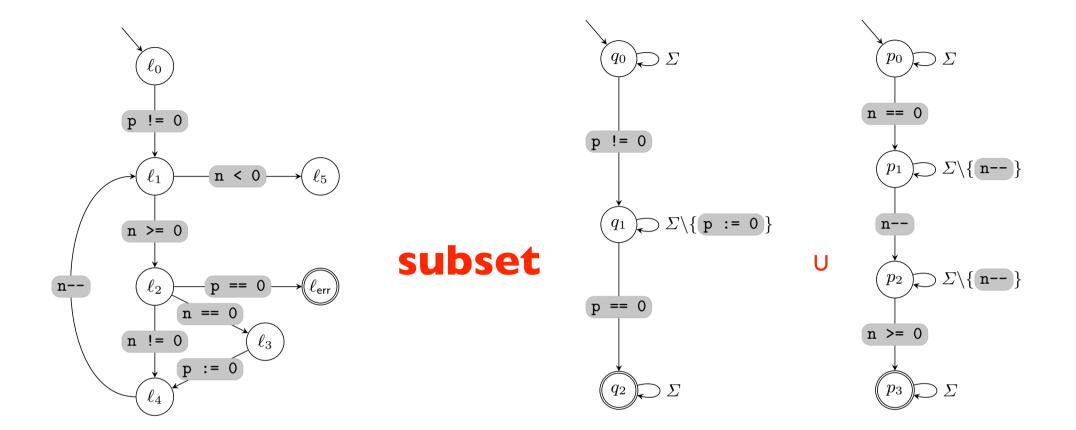
unsatisfiable core



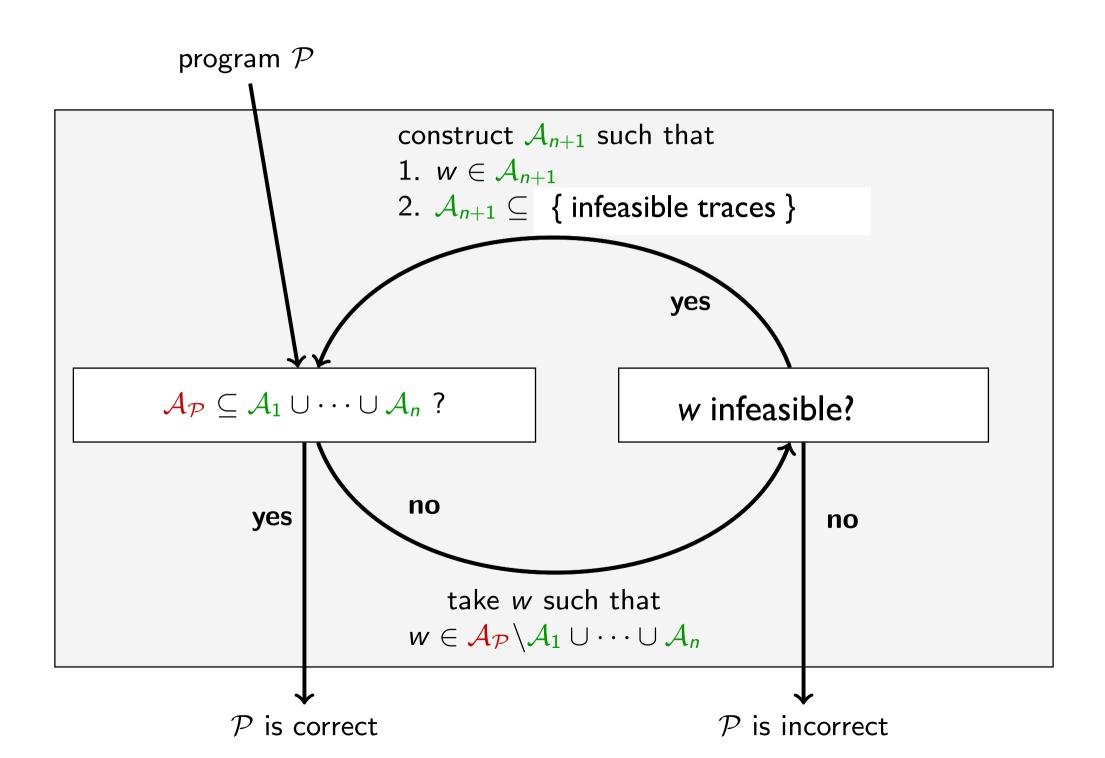
construct second data automaton from unsatisfiable core (step 1)



construct second data automaton from unsatisfiable core (step 2)



program automaton is subset of union of data automata



- take error trace in program
- check infeasibility of error trace
- construct data automaton from unsatisfiability proof

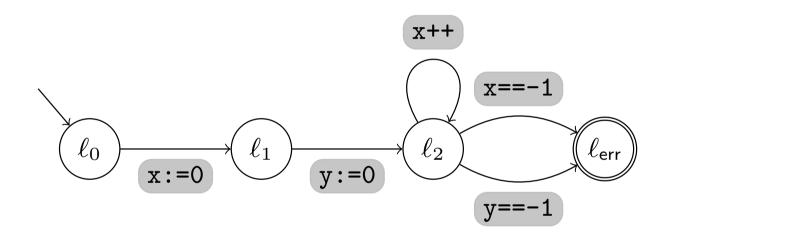
if automata are constructed from unsatisfiable core

is the verification algorithm complete?

(can we prove every correct program correct?)

```
\begin{array}{lll} \ell_0: & x := 0; \\ \ell_1: & y := 0; \\ \ell_2: & \text{while(nondet) } \{x++;\} \\ & \text{assert}(x != -1); \\ & \text{assert}(y != -1); \end{array}
```

```
\begin{array}{lll} \ell_0: & x := 0; \\ \ell_1: & y := 0; \\ \ell_2: & \text{while(nondet) } \{x++;\} \\ & \text{assert}(x != -1); \\ & \text{assert}(y != -1); \end{array}
```



trace infeasible =

trace satisfies pre/postcondition pair (true, false)

infeasibility proof with Hoare triples

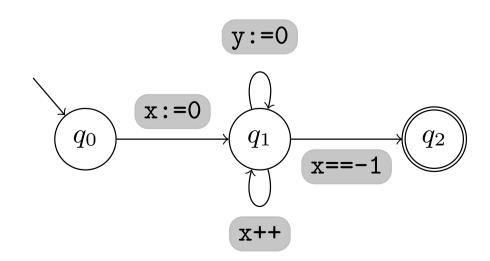
automaton constructed from Hoare triples

all traces accepted by automaton are infeasible

infeasible = satisfy pre/postcondition pair (true, false)

construction "Hoare proof → automaton"

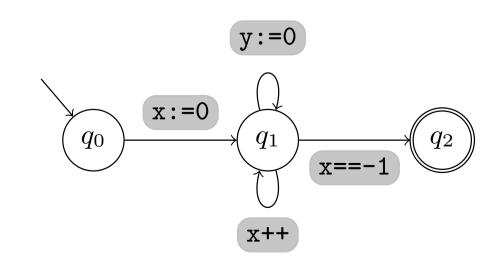
Hoare triple → transition

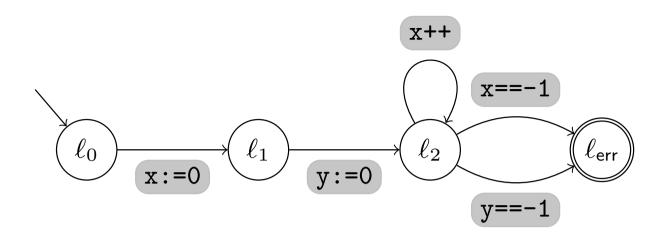


construction "Hoare proof → automaton"

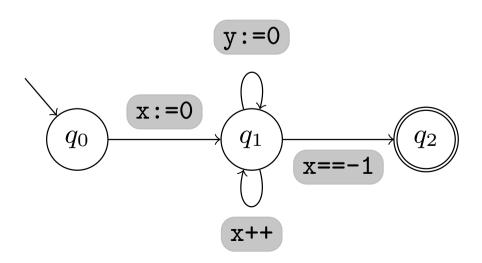
assertion \longrightarrow state
Hoare triple \longmapsto transition

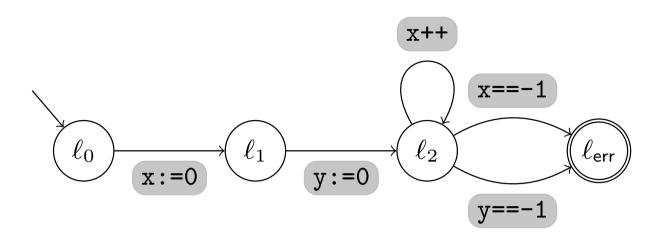
precondition \longrightarrow initial state postcondition \longmapsto final state



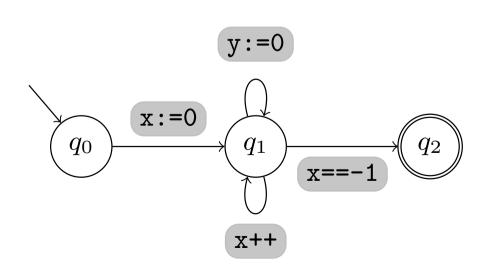


program automaton subset data automaton?

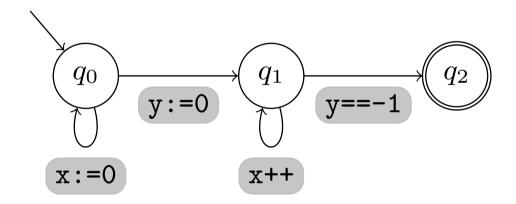




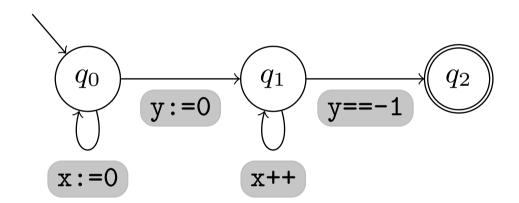
program automaton not subset of data automaton:



automaton from Hoare triples which prove infeasibility



automaton from Hoare triples which prove infeasibility

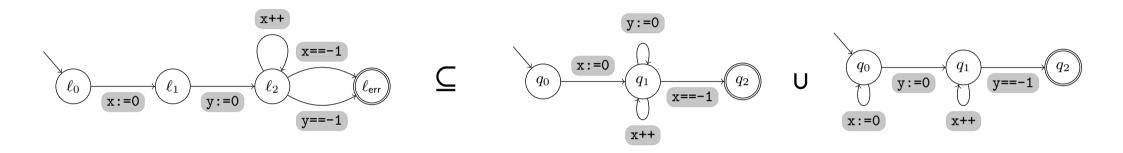


we can construct the same automaton from unsatisfiable core (since variable x does not appear in unsatisfiable core)

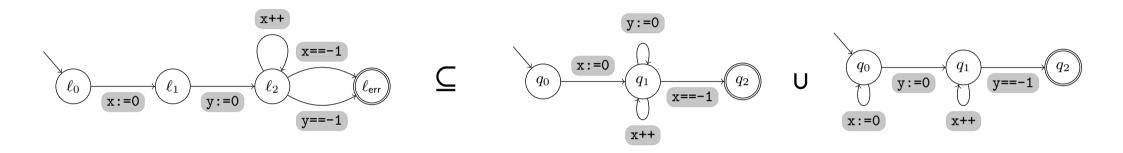
construction of automaton from unsatisfiable core is a special case of construction of automaton from Hoare proof

exists proof for infeasibility of trace

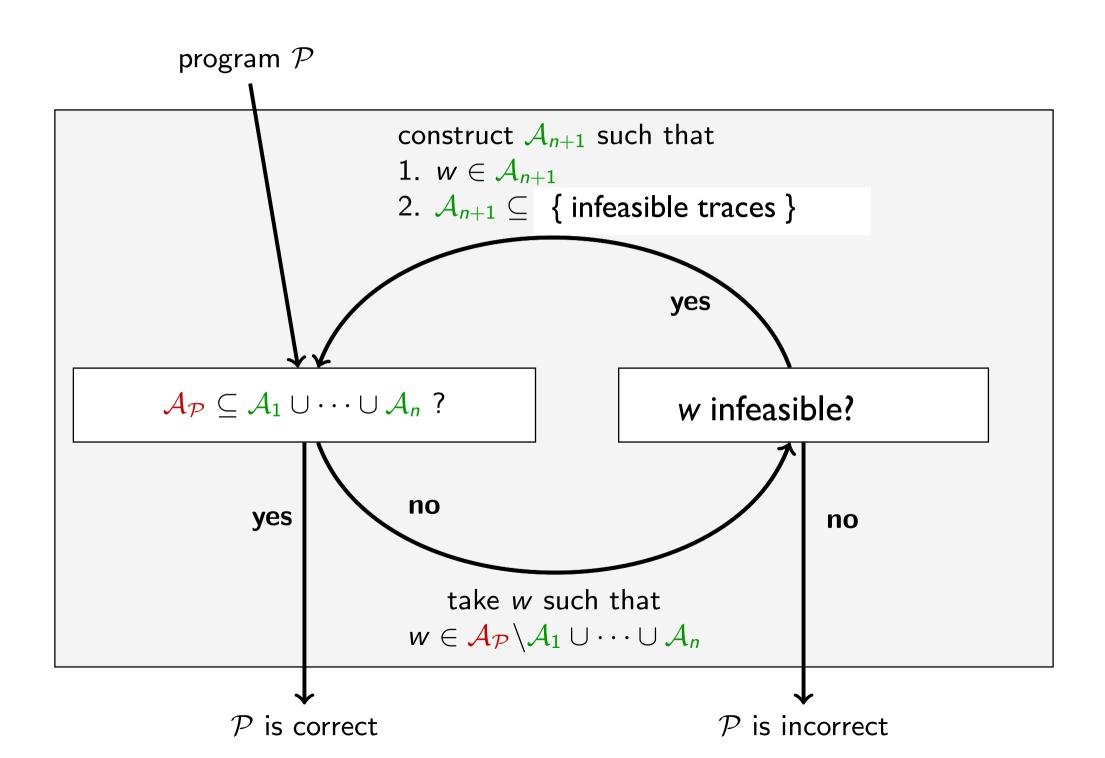
exists Hoare proof whose assertions are invariant under any statement that does not update a variable in unsatisfiable core



program automaton subset of union of data automata?



program automaton is subset of union of data automata!



- take error trace in program
- check infeasibility of error trace
- construct data automaton from **Hoare** triples

- take error trace in program
- check infeasibility of error trace
- construct data automaton from unsatisfiability proof

- take error trace in program
- check infeasibility of error trace
- construct data automaton from **Hoare** triples

completeness of verification algorithm

for every correct program
there exists data automata
such that
program automaton ⊆ union of data automata

conclusion and future work

automaton constructed from proof

proof generated by SMT solver

(Satisfiability checker Modulo Theory)

a trace is a word

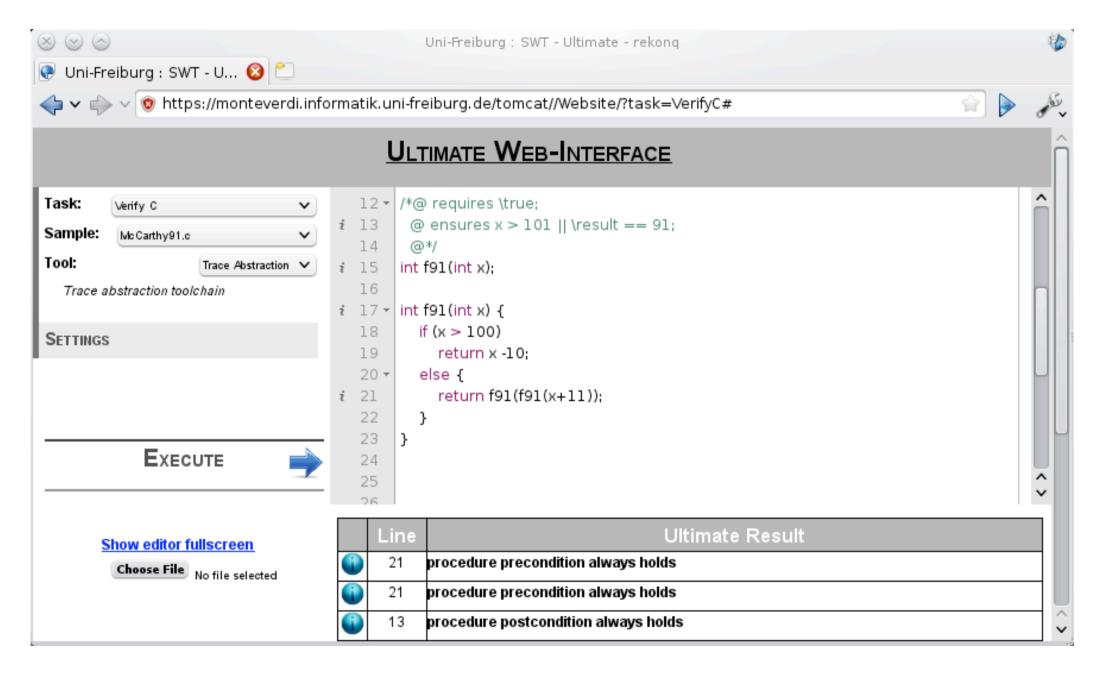
a trace is a program

we can use automata to express new sets of traces

program is just one particular automaton program expresses one particular set of traces

"cover program by union of simple automata"

Automizer

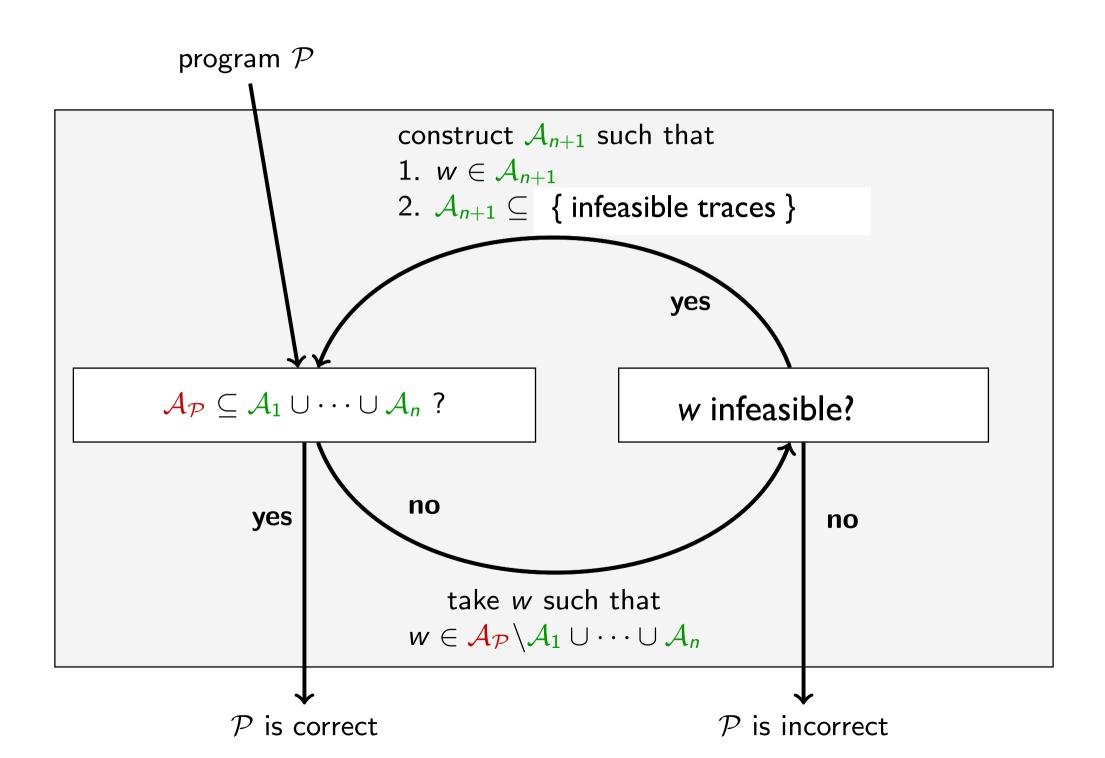


C and Boogie, safety and termination

sequential programs	nondeterministic finite automata
termination	
recursion	nested word automata
concurrency	alternating finite automata
unbounded parallelism	predicate automata
proofs that count	Petri net ⊆ counting automaton

data base of automata

automata constructed from proofs



construct automaton from proof of incorrectness

error diagnosis statement *irrelevant* if on loop in automaton

classify error paths error paths equivalent if same automaton