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Outline

e BMC (Bounded Model Checking)
o Goal : Finding counter-examples violating an assertion
o State of the art Methods — SAT /SMT Solvers

* Program analysis
o Goal: Get rid of false alarms
o State of the art Methods — abstract interpretation

* Fault localization
o Goal: locations of potentially faulty statements
o State of the art Methods — MaxSat
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Bounded Model Checking

e Context: programs with numeric operations over integer or
floating point numbers

* Goal: Finding counter-examples violating an assertion
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Bounded Model Checking framework

Models — finite automates, labelled transition systems

Properties:
o Safety — something bad should not happen
o Liveness — something good should happen

Bound k — look only for counter examples made of
k states
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Bounded Model Checking framework (cont.)

% set of states: S, initial states: |, transition relation: T
% bad states B reachable from I via T?
bounded_model_checker;,,,,..4(l,T,B,k)

SC=J; SN=I;, n=1

while S. # S, and n<k do

f B n S, #zJ
then return “found error trace to bad states”;

else S.=S\;Sy=Sc UT(SC);n=n+1;
done
return “no bad state reachable”;
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SAT/SMT - Based BMC framework

1 The program is unwound k times

2 The unwound (and simplified) program and the negation of the
property are translated into a big propositional formula ¢

@ is satisfiable iff there exists a counterexample of depth less
than k

SAT solvers solvers have a “Global view”
Numerical expressions — Boolean abstraction
— Spurious solutions
Critical issue: relevant minimum conflict sets to limit backtracks
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CP-Based BMC framework

1 The program is unwound k times

2 The unwound (and simplified) program in SSA/DSA form and the
negation property are translated on the fly into constraint system Cs

Cs is satisfiable for a full path iff there exists a counterexample of
depth less than k

Various solvers and strategies can be used

To explore only a limited part of the search space, efficient pruning is a
critical issue
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CP-Based BMC: CPBPV, a depth first strategy

CPBPV:

* Translate precondition (if exists) and property to check into a set of
constraints

Explore each branch Bi of the program and translate statements of
branch Bi into a set of constraints

o If for each branch Bi, the generated CSP is inconsistent , then
the program is conform with its specification

o If for some branch Bi the generated CSP has a solution, then
this solution is a counterexample — exhibits a non-conformity

Inconsistencies are detected at each node of the control flow graph
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CP-Based BMC: DPVS, a Dynamic Backjumping
Strategy

Start from the post-condition and jump to the first locations where
the variables of the post-condition are assigned

Essential observation:
When the program is in an SSA-like form, CFG does not have to be
explored in a top down (or bottom up) way
— compatible blocks can just be collected in a non-
deterministic way

Why does it pay off ?
o Enforces the constraints on the domains of the selected variables

o Detects inconsistencies earlier
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CP-Based BMC: DPVS, example

void foo(int a, int b)
intc,d, e, f;
if(a>=0) {
ifHa<10){f=b-1;}
else-{f=b-a;}
c=a;
if (b>=0) {d=a; e=b}
else {d=a; e=-b;} }
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- c=b; d=1; e=-3;
do_ ) do:ao .
e,=b, e, = -b, ifHa>bHf=b+e+as}
else {f_e*a b’I }
ot c=ct+d+e;
c,=c,+d +e assert(c>=d+e); // property p,

assert(f>=-b*e); // property p,

To prove property p,, select node (12), then select node (4)
— the condition in node (0) must be true

S5={c, <dyte,y A ¢, =cy+dyteyA ¢ =ayA ay 25} ={a,< 0 A a2 0} ... inconsistent
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CP-Based BMC: DPVS, example (cont.)

void foo(int a, int b)
intc,d, e, f;
if(a>=0) {
ifHa<10)}{=b-1;}
else-{f=b-a;}
c=a;
if (b>=0) {d=a; e=b}
else {d=a; e=-b;} }
else {
c=b; d=1; e=-3;
else{f=e*g-b;}}
c=ct+d+e;
assert(c>=d+e); // property p,
assert(f>=-b*e); // property p,

Select node (8) — condition in node (0) must be false:

S = {cl<djtey, A cl=cytdyte, A co=b, A 0,<0 A dy=1 A ey=-0a,}
= {a,<0 A b,<0}

Solution {00 = -1, b0 = -1}
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CP-Based BMC: Static versus Dynamic Strategies

Two benchmarks:
* Flasher Manager, industrial application
* Binary Search

Bench DPVS CPBPV
FM5 0.5 1.24
FM 100 15.95 > 600
FM 200 22.65 > 600
BS 8 35 0.2

BS 16 > 600 1.14

— Pruning is a critical issue
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CP-Based program analysis

e Context:

— Embedded Systems (Anti-lock Braking System controller, ...)
rely more and more on floating-point computations

— Clanguage is widely used for such applications (often C code
generated from a Simulink model)

Floats — a source of execution errors

* Goal: Get rid of false alarms (generated by abstract interpretation
tools)
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Problems with floating-point numbers

Rounding: Counter-intuitive properties

o Arithmetic operators are neither associative nor
distributive

o Reasoning with absorption and cancellation

Examples (in simple precision, binary representation):
o Absorption: 107 + 0.5 = 10’
o Cancellation: ((1-10"7)-1)* 107 =-1.192...(# -1)
o (10000001-107)+0.5 # 10000001-(107 +0.5)
o 0.1=(0.000110011001100...)

CP for Numerical Program Analysis
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Problems with floating-point numbers (cont.)

Programs are run on the floats but:
o Specification, properties of programs
— Users are reasoning with real numbers
o Programs are often written with the semantics of real numbers “in
mind”
o Differences between computations over real numbers and
computations over the floats

— Execution problems on programs with floats
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Abstract Interpretation

Goal: static detection of execution errors A
— Approximations of computations over floats .- [:

and of computations over the real numbers

Intervals, zonotopes, polyhedra...

Zonotopes: convex polytopes with a central symmetry (sets of affine
forms)

+ Good trade-off between performance and precision

—  Not very accurate for nonlinear expressions and on very
common program constructs such as conditionals

CP for Numerical Program Analysis

Michel Rueher 16

19/05/15



Limits of Abstract Interpretation: false alarms

x(t)
A

Possible
trajectories

Courtesy
to Patick Cousot

x(t)

% Forbidden zone :7 False alarm

! Possible

‘ D " trajectories
I

Imprecise trajectory abstraction

CP for Numerical Program Analysis

19/05/15 Michel Rueher

17



Al versus CP

Abstract Interpretation: good scalability for estimating
rounding errors but over-approximation
— false alarms

— totally inappropriate behaviours of a program may be
dreaded but the developer does not know whether these
behaviours will actually occur !

Constraint Programming :

Good precision (strong refutation capabilities, finding counter
examples) but lack of scalability
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rAICP: Combining Al and CP (cont.)

Successive exploration and merging steps

o Use of Al to compute a first approximation of the values of
variables at a program node where two branches join

o Building a constraint system for each branch between two join
nodes in the CFG of the program and use of CP local
consistencies to shrink the domains computed by Al
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rAICP: example

1 /x Pre—condition: f,g €[—10,10] /
2 float foo(float f, float g) {
3 float x, y, z;

On floats and reals, foo — z=[0,50]

: Fluctuat — z=1[0,100]
ST fraxg Merge points of foo: lines 13 and 21
7 if (x <= 0) {
8 ) y =& lines 1 —13:
o else { Fluctuat — f,g,y € [-10,10], x € [-10, 0]
11 y = -g;
z } FPCS (path 1, “then” branch) :
i if (y >= 0) { C={x=f+2%g A XSO Ay=g A =10 f A f<10 A
15z = 10%y; -10<g A g<10 A -10<y A y<10 A -10<x A x<0}
o 3 — g,y € [-10,5]
7 else {
iz ) 2= lines 14 — 22:
" Fluctuat — z € [0,50]
21 return z;
2 }
19/05/15 CP for Numerical Program Analysis 20
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rAICP: Filtering techniques

FPCS: solver over floating-point constraints combining interval
propagation with explicit search

* Correct solver over the floats : no solutions are lost
* Based on 2B-consistency and 3B-consistency
Projection functions for floats:

* Direct projections: straightforward adaptation of interval
arithmetic

* |nverse projections: less intuitive, more complex (e.g., might
need a larger format than the system variables)

* Handling of rounding modes, nonlinear expressions and the usual
mathematical functions (trigonometric. . . )

CP for Numerical Program Analysis
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Experiments: eliminating false alarms

CDFL: Program analyser for proving the absence of runtime
errors in program with floating-point computations based
Conflict-Driven Learning

rAICP Fluctuat CDFL
False alarms 0 11 0
Total time 40.55s 18.33 s 208.99 s

Computed on the 55 benchs from CDFL paper (TACAS’12, D’Silva,
Leopold Haller, Daniel Kroening, Michael Tautschnig)
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Generating Test Cases inside Suspicious Intervals

forbidden interval . R range over R Rg forbidden interval

approximation over I

* Suspicious intervalsforx: [x,,Xx,—€]or[x,+¢€,x ]
 Tolerance specified by the user : €

* Question: Can the program hit a forbidden zone over the floating-
point numbers?
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Proposed approach : CPBPV_FP

“Forward” propagation
Computing the suspicious interval of x
— approximate the domain of x over the reals by
— approximate domain of x over the floats by [x , x /]

“Backward “ propagation
Computing test-cases inside a suspicious interval of x
— Solving a bounded-model checking problem with domain of
X restrictedto [X, X,—€]or[x +¢ x,]

CP for Numerical Program Analysis
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CPBPV_FP : CP based BMC for floats

Outputs :

* A test case
— P can produce a suspicious value for x

* A proof that no test case exists
— the suspicious interval can be removed

Only the case if the loops in P cannot be unfolded beyond the bound k

* An inconclusive answer
— P may produce a suspicious value

no test case could be generated
but the loops in P could be unfolded beyond the bound k
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FPCS Search Strategies

» std: standard prune & bisection-based search

* fpc: domain of selected variable is split in 5 intervals
« 3 degenerated intervals: the smallest float /, the largest float r, and
the mid-point m
 intervals JI, m[and Jm, r[

* fp3s: domain of selected variable is split in 3 degenerated intervals: the
smallest float /, the largest float r, and the mid-point m

CP for Numerical Program Analysis

Michel Rueher 26

19/05/15



Experiments: tools

* CDFL: Program analyser for proving the absence of runtime errors in
program with floating-point computations based on Conflict-Driven
Learning

* CBMLC: state of art bounded mode checkers

* CPBPV_FP: our constraint-based bounded- model checking
framework
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Experiments: Program Heron

Uses Heron’s formula to compute the area of a triangle from the lengths of
a, b, and c (a being the longest side):
area= sqrt(s*(s-a)*(s-b)*(s-c) with s=(a+b+c)/2

1 /* Pre—condition : a > banda > ¢ x/
> float heron(float a, float b, float c¢) {
3 float s, squared_area;

4

5 squared_area = 0.0f;

6 if (a <=b+c¢){

7 s =(a+b+c)/ 2.0f;

8 squared_area = sk(s—a)*(s—b)x(s—c);
o}

10 return sqrt(squared_area);

11 }

Optimized Heron : squared_area = ((a+(b+c))*(c—(a—b))
x(c+(a—b))*(a+(b—c)))/16.0f;
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Experiments

Name Condition CDFL CBMC | std fpc fpc3s s?

heron aera < 10, 3.87s 0.28s | >180s 0.02sn |y
area > 156.25f +10,> | >180s | 34.51s | 22.32s |7.80s |0.08sn |y

optimized | aera< 10, 7.61s >180s | 0.15s [0.01sn |y
heron area > 156.25f +10,> | >180s | >180s | 8.99s 0.01sn

>

std: standard prune & bisection-based search
fpc: domain of selected variable is split in 5 intervals
* 3degenerated intervals: the smallest float /, the largest float r, and the
mid-point m
* intervals JI, m[and Jm, r[
fp3s: domain of selected variable is split in 3 degenerated intervals: the smallest
float /, the largest float r, and the mid-point m
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Fault localization

Problem:
— Execution trace: often /lengthy and difficult to understand
— Difficult to locate the faulty statements

Goal: Provide helpful information for error localization on numeric
constraint systems

Input:

* Some imperative program with numeric statements (over
integers or floating-point numbers)

* An assertion to be checked
* A counter-example that violates the assertion

Output: information on locations of potentially faulty
statements

CP for Numerical Program Analysis
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Fault localization — Keys issues

 What paths to analyse?

— Path from the counterexample
— Deviations from the path from the counterexample

 How to identify the suspicious program statements
— Computing Maximal sets of statements satisfying the
postcondition — Maximal Satisfiable Subset

— Computing Minimal sets of statements to withdraw — Minimal
Correction Set ?

CP for Numerical Program Analysis

19/05/15 Michel Rueher

31



MSS, MCS: Definitions

* IMSS Maximal Satisfiable Subset
a generalization of MaxSAT considering maximality instead of

maximum cardinality
M S CisaMSS < MisSATand V¢, € C\M: M U {c}is UNSAT

*  MCS Minimal Correction Set
the complement of some MSS: removal yields a satisfiable MSS (it
“corrects” the infeasibility)
MES CisaMCS < C\MisSATand V¢, € M: (C\M)U({c}is
UNSAT
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LocFaults — Selecting Diverted Paths

* Explore the path of the counter-example and paths with at most k
deviations

Example: one deviation

Decision for one conditional statement is switched and the input
data of the counter-example are propagated — new path P’

Iff CSP,, U CSP,,s; is satisfiable, MCS are computed for P’

e Compute MCS with at most m suspicious statements

Bounds k and m are mandatory because there are an exponential
number

of paths and sets of suspicious statements

CP for Numerical Program Analysis
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LocFaults — Computing MCCs for Diverted Paths

Let be:

* P, a path generated by k decision switches of conditional statements
cond,, .., cond, and by the propagation of CE

* C, the constraints of P, and C,, the constraints generated by the
assighments occurring before cond,_ along P,

If C U POST holds:

* {-cond,, .., —cond, }is a potential correction,
* TheMCSofC, U {-cond,, .., -cond, } are potential corrections

Note: {~cond, , .., —=cond, }is a "hard” constraint
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LocFaults — Exemple

CFG of AbsMinus

19/05/15

Faulty path for{i=0, j=1}
— Suspicious statement: {r=i-j}
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LocFaults — Exemple (cont.)

Change decision for 2d IF: Post-condition holds
CSP: k0 =0 A k1 =k0 +2 A —((k1 =1&lI # j))
Potential corrections: {k0 =0},{k=k+2},

{k=1&I # j}

Change decision for 1st IF
Post-condition is violated
— Path diversion Rejected
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Computing all MCS(Minimal Correction Set)
Liffiton & Sakallah-2007

All_MCSes(d)

1. ¢’ &< AddYVars(o) % Adds y. selector variables

2. MCSes < @

3. k<1

4. while (SAT(¢'))

5 d),k < ¢, /\ AtMOSt({_'y]_I Yy .ot _'yn}I k)

6. while (newMCS & IncrementalSAT(d',)) %All MCS of size K
7

8

MCSes €& MCSes U {newMCS}
¢’ € o', A BlockingClause(newMCS) % Excludes super sets for

for size=k

9. ¢’ < ¢’ A BlockingClause(newMCS) % Excludes super set
for size > k

10. end while

11. k<&k+1

12. end while

13. return MCSes

* Incremental solver (MiniSAT) can be used in loop (I. 6) because constraints are
only added but not external loop(l.4) since incrementing k relaxes constraints

* The set of yi variables assigned to false indicates the clauses in MCS
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LocFaults — experiments

Benchs CE E Locfaults BugAssist
0 1
V7 i=2,j=1, 58 |58 |0,77s | {31},{37},|0,86s |{72,37,53,49, |20,48s
k=2 {27},{32} 29, 35, 32, 31,
28, 65, 34, 62}
V8 i=3,j=4, 61 |61 |0,74s |{29},{35}, |10,88s |{19,61,79,35, |25,72s
k=3 {30},{25} 27, 33, 30, 42,
29, 26,71, 32,
48, 51, 44}

BugAssist: global approach based on MaxSat, merges the complements of MaxSat in a
single set of suspicious statements
V7 and V8 : variations of Tritype
Input: three positive integers, the triangle sides
Output: type of triangle (isosceles, equilateral, scalene, not a triangle)
V7 returns the product of the 3 sides
V8 computes the square of the surface of the triangle by using Heron’s formula

19/05/15
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LocFaults — Sum up

* Flow-based and incremental approach
— locates suspicious statements around the path of the counter-

example

* Constraint-based framework
— well adapted for handling arithmetic operations ... on
integers

— can be extended for handling programs with floating-
point numbers computations (?)
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Conclusion

BMC (Bounded Model Checking)
o Goal : Finding counter-examples violating an assertion
o Contribution of CP: Various solvers and search strategies
o Limit of CP: efficient pruning is a critical issue

Program analysis
o Goal: Get rid of false alarms
o Contribution of CP : Refining abstraction, suspicious values
o Limit of CP: high computation cost

Fault localization
o Goal: locations of potentially faulty statements
o Contribution of CP : flow-based & incremental approach
o Limit of CP: no global view
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