ON THE CAPABILITIES OF CP FOR NUMERICAL PROGRAM ANALYSIS

Michel Rueher

Joined work with

Hélène Collavizza, Claude Michel, Olivier Ponsini, Pascal Van Hentenryck, Mohammed Said Belaid, Le Vinh Nguyen, Mohammed Bekkouche

University of Nice Sophia Antipolis – CNRS

Master Class "CONSTRAINT PROGRAMMING AND VERIFICATION » CPAIOR 2015, Barcelona, May 2015

Outline

- BMC (Bounded Model Checking)
 - Goal : Finding counter-examples violating an assertion
 - State of the art Methods → SAT/SMT Solvers
- Program analysis
 - Goal: Get rid of false alarms
 - State of the art Methods → abstract interpretation
- Fault localization
 - Goal: locations of potentially faulty statements
 - State of the art Methods → MaxSat

Bounded Model Checking

- Context: programs with numeric operations over integer or floating point numbers
- Goal : Finding counter-examples violating an assertion

Bounded Model Checking framework

Models → finite automates, labelled transition systems

Properties:

- Safety → something bad should not happen
- Liveness → something good should happen

Bound $k \rightarrow look$ only for counter examples made of k states

Bounded Model Checking framework (cont.)

```
% set of states: S, initial states: I, transition relation: T
% bad states B reachable from I via T?
bounded_model_checker<sub>forward</sub>(I,T,B,k)
    SC = \emptyset; SN =I; n=1
    while S_c \neq S_N and n < k do
         If B \cap S<sub>N</sub> \neq \emptyset
         then return "found error trace to bad states";
         else S_C = S_N; S_N = S_C \cup T(SC); n = n + 1;
    done
return "no bad state reachable";
```

SAT/SMT - Based BMC framework

- **1** The *program is unwound k* times
- 2 The unwound (and simplified) program and the negation of the property are translated into a big propositional formula φ

φ is satisfiable iff there exists a counterexample of depth less than k

SAT solvers solvers have a "Global view"

Numerical expressions → Boolean abstraction

→ Spurious solutions

Critical issue: relevant minimum conflict sets to limit backtracks

CP-Based BMC framework

- **1** The *program is unwound k* times
- 2 The unwound (and simplified) program in SSA/DSA form and the negation property are translated on the fly into constraint system Cs

Cs is satisfiable for a full path iff there exists a counterexample of depth less than k

Various solvers and strategies can be used

To explore only a limited part of the search space, efficient pruning is a critical issue

CP-Based BMC: CPBPV, a depth first strategy

CPBPV:

- Translate precondition (if exists) and property to check into a set of constraints
- Explore each branch Bi of the program and translate statements of branch Bi into a set of constraints
 - If for each branch Bi, the generated CSP is inconsistent, then the program is conform with its specification
 - o If for some branch Bi the generated CSP has a solution, then this solution is a counterexample \rightarrow exhibits a non-conformity

Inconsistencies are detected at each node of the control flow graph

CP-Based BMC: DPVS, a Dynamic Backjumping Strategy

Start from the post-condition and jump to the first locations where the variables of the post-condition are assigned

Essential observation:

When the program is in an SSA-like form, CFG does not have to be explored in a top down (or bottom up) way

→ compatible blocks can just be collected in a nondeterministic way

Why does it pay off?

- Enforces the constraints on the domains of the selected variables.
- Detects inconsistencies earlier

CP-Based BMC: DPVS, example


```
void foo(int a, int b)
int c, d, e, f;
if(a>=0) {
      if (a<10) {f=b-1;}
      else {f=b-a:}
      c=a;
      if (b>=0) \{d=a; e=b\}
      else {d=a; e=-b;} }
else {
      c=b: d=1: e=-a:
      if (a>b) {f=b+e+a;}
      else {f=e*a-b:} }
c = c + d + e:
assert(c>=d+e); // property p_1
assert(f \ge -b^*e); // property p_2
```

To prove property p_1 , select node (12), then select node (4)

 \rightarrow the condition in node (0) must be true

$$S = \{c_1 < d_0 + e_0 \land c_1 = c_0 + d_0 + e_0 \land c_0 = a_0 \land a_0 \ge 0\} = \{a_0 < 0 \land a_0 \ge 0\} \dots \text{ inconsistent}$$

CP-Based BMC: DPVS, example (cont.)


```
void foo(int a, int b)
int c, d, e, f;
if(a>=0) {
      if (a<10) {f=b-1;}
      else {f=b-a:}
      c=a;
      if (b>=0) \{d=a; e=b\}
      else {d=a: e=-b:} }
else {
      c=b; d=1; e=-a;
      if (a>b) {f=b+e+a;}
      else {f=e*a-b:} }
c = c + d + e:
assert(c>=d+e); // property p<sub>4</sub>
assert(f \ge -b^*e); // property p_2
```

Select node (8) \rightarrow condition in node (0) must be false:

$$S = \{c1 < d_0 + e_0 \land c1 = c_0 + d_0 + e_0 \land c_0 = b_0 \land a_0 < 0 \land d_0 = 1 \land e_0 = -a_0\}$$

$$= \{a_0 < 0 \land b_0 < 0\}$$
Solution $\{a0 = -1, b0 = -1\}$

CP-Based BMC: Static versus Dynamic Strategies

Two benchmarks:

- Flasher Manager, industrial application
- Binary Search

Bench	DPVS	CPBPV
FM 5	0.5	1.24
FM 100	15.95	> 600
FM 200	22.65	> 600
BS 8	35	0.2
BS 16	> 600	1.14

→ Pruning is a critical issue

CP-Based program analysis

Context:

- Embedded Systems (Anti-lock Braking System controller, ...)
 rely more and more on floating-point computations
- C language is widely used for such applications (often C code generated from a Simulink model)
 - Floats → a source of execution errors
- **Goal:** *Get rid of false alarms* (generated by abstract interpretation tools)

Problems with floating-point numbers

Rounding: Counter-intuitive properties

- Arithmetic operators are neither associative nor distributive
- Reasoning with absorption and cancellation

Examples (in simple precision, binary representation):

- Absorption: $10^7 + 0.5 = 10^7$
- Cancellation: $((1-10^{-7})-1)*10^7 = -1.192...(\neq -1)$
- $0 (10000001-10^7)+0.5 \neq 10000001-(10^7+0.5)$
- 0.1=(0.000110011001100...)

Problems with floating-point numbers (cont.)

Programs are run on the floats but:

- Specification, properties of programs
 - → Users are **reasoning with real numbers**
- Programs are often written with the semantics of real numbers "in mind"
- Differences between computations over real numbers and computations over the floats
 - → Execution problems on programs with floats

Abstract Interpretation

Goal: static detection of execution errors

→ Approximations of computations over floats and of computations over the real numbers

Intervals, zonotopes, polyhedra...

Zonotopes: convex polytopes with a central symmetry (sets of affine forms)

- Good trade-off between performance and precision
- Not very accurate for nonlinear expressions and on very common program constructs such as conditionals

Limits of Abstract Interpretation: false alarms

Courtesy to Patick Cousot

Al versus CP

Abstract Interpretation: *good scalability* for estimating rounding errors but *over-approximation*

- → false alarms
- → totally inappropriate behaviours of a program may be dreaded but the developer does not know whether these behaviours will actually occur!

Constraint Programming:

Good precision (strong refutation capabilities, finding counter examples) but **lack of scalability**

rAICP: Combining AI and CP (cont.)

Successive exploration and merging steps

- Use of AI to compute a first approximation of the values of variables at a program node where two branches join
- Building a constraint system for each branch between two join nodes in the CFG of the program and use of *CP local* consistencies to shrink the domains computed by AI

rAICP: example

```
1 /* Pre-condition: f,g \in [-10,10] */
                                                                                                                                                                                                                                                                     On floats and reals, foo \rightarrow z= [0,50]
   2 float foo(float f, float g) {
                       float x, y, z;
                                                                                                                                                                                                                                                                      Fluctuat \rightarrow z= [0,100]
                    x = f + 2 * g;
                                                                                                                                                                                                                                                                     Merge points of foo: lines 13 and 21
    6
                    if (x \le 0) {
                                                                                                                                                                                                                                                                     lines 1 \rightarrow 13:
                 y = g;
                                                                                                                                                                                                                                                                      Fluctuat → f,g,y \in [-10,10], x \in [-10,0]
10 else {
                   y = -g;
12
                                                                                                                                                                                                                                                                     FPCS (path 1, "then" branch):
13
                                                                                                                                                                                                                                                                    C = \{x = f + 2 * q \land x \le 0 \land y = q \land -10 \le f \land f \le 10 \land f \ge 10 \land f \le 10 \land f \le 10 \land f \ge 10 \land
                    if (y >= 0) {
14
                                                                                                                                                                                                                                                                    -10 \le q \land q \le 10 \land -10 \le y \land y \le 10 \land -10 \le x \land x \le 0
                 z = 10*y;
15
16
                                                                                                                                                                                                                                                                    \rightarrow q, y \in [-10,5]
                    else {
17
                    z = -y;
                                                                                                                                                                                                                                                                     lines 14 \rightarrow 22:
18
                       }
19
                                                                                                                                                                                                                                                                      Fluctuat \rightarrow z \in [0,50]
20
                       return z;
21
22 }
```

rAICP: Filtering techniques

FPCS: solver over floating-point constraints combining interval propagation with explicit search

- Correct solver over the floats: no solutions are lost
- Based on **2B-consistency** and **3B-consistency**

Projection functions for floats:

- Direct projections: straightforward adaptation of interval arithmetic
- Inverse projections: less intuitive, more complex (e.g., might need a larger format than the system variables)
- Handling of rounding modes, nonlinear expressions and the usual mathematical functions (trigonometric. . .)

Experiments: eliminating false alarms

CDFL: Program analyser for proving the absence of runtime errors in program with floating-point computations based on Conflict-Driven Learning

	rAICP	Fluctuat	CDFL
False alarms	0	11	0
Total time	40.55s	18.33 s	208.99 s

Computed on the 55 benchs from CDFL paper (TACAS'12, D'Silva, Leopold Haller, Daniel Kroening, Michael Tautschnig)

Generating Test Cases inside Suspicious Intervals

- Suspicious intervals for $x : [\underline{\mathbf{x}}_F, \underline{\mathbf{x}}_R \varepsilon]$ or $[\mathbf{x}_R + \varepsilon, \mathbf{x}_F]$
- Tolerance specified by the user : ε
- Question: Can the program hit a forbidden zone over the floatingpoint numbers?

Proposed approach: CPBPV_FP

"Forward" propagation

Computing the suspicious interval of x

- \rightarrow approximate the domain of x over the reals by
- \rightarrow approximate domain of x over the floats by $[\mathbf{x}_F, \mathbf{x}_F]$

"Backward" propagation

Computing test-cases inside a suspicious interval of x

 \rightarrow Solving a bounded-model checking problem with domain of x restricted to [\mathbf{x}_F , $\mathbf{x}_R - \epsilon$] or [$\mathbf{x}_R + \epsilon$, \mathbf{x}_F]

CPBPV_FP : CP based BMC for floats

Outputs:

- A test case
 - \rightarrow *P* can produce a suspicious value for x
- A proof that no test case exists
 - → the suspicious interval can be removed

Only the case if the loops in P cannot be unfolded beyond the bound k

- An inconclusive answer
 - → *P may produce* a suspicious value

no test case could be generated but the loops in P could be unfolded beyond the bound k

FPCS Search Strategies

- **std:** standard *prune & bisection-based search*
- **fpc:** domain of selected variable is split in *5 intervals*
 - 3 degenerated intervals: the smallest float I, the largest float r, and the mid-point m
 - intervals]I, m[and]m, r[
- **fp3s:** domain of selected variable is split in 3 degenerated intervals: the smallest float *I*, the largest float *r*, and the mid-point *m*

Experiments: tools

- CDFL: Program analyser for proving the absence of runtime errors in program with floating-point computations based on Conflict-Driven Learning
- CBMC: state of art bounded mode checkers
- CPBPV_FP: our constraint-based bounded- model checking framework

Experiments: Program Heron

Uses Heron's formula to compute the area of a triangle from the lengths of a, b, and c (a being the longest side):

area = sqrt(s*(s-a)*(s-b)*(s-c) with s=(a+b+c)/2

```
/* Pre-condition: a \ge b and a \ge c */
float heron(float a, float b, float c) {
float s, squared_area;

squared_area = 0.0f;

if (a <= b + c) {
s = (a + b + c) / 2.0f;
squared_area = s*(s-a)*(s-b)*(s-c);

return sqrt(squared_area);
}

return sqrt(squared_area);
```

```
Optimized Heron : squared_area = ((a+(b+c))*(c-(a-b))
 *(c+(a-b))*(a+(b-c)))/16.0f;
```

Experiments

Name	Condition	CDFL	СВМС	std	fpc	fpc3s	s?
heron	aera < 10 _f ⁻⁵ area > 156.25f +10 _f ⁻⁵	3.87 s > 180 s	0.28 s 34.51 s	> 180 s 22. 32 s	0.70 s 7.80 s	0.02 s n 0.08 s n	У
optimized heron	aera < 10_f^{-5} area > 156.25f + 10_f^{-5}	7.61 s > 180 s	0.93 s > 180 s	> 180 s 8.99 s	0.15 s 30.48 s	0.01 s n 0.01 s n	y n

std: standard *prune & bisection-based search*

fpc: domain of selected variable is split in *5 intervals*

- 3 degenerated intervals: the smallest float I, the largest float r, and the mid-point m
- intervals]I, m[and]m, r[

fp3s: domain of selected variable is split in 3 degenerated intervals: the smallest float I, the largest float r, and the mid-point m

Fault localization

- Problem:
 - Execution trace: often lengthy and difficult to understand
 - Difficult to locate the faulty statements
- Goal: Provide helpful information for error localization on numeric constraint systems
- Input:
 - Some imperative program with numeric statements (over integers or floating-point numbers)
 - An assertion to be checked
 - A counter-example that violates the assertion
- **Output**: information on locations of *potentially faulty statements*

Fault localization – Keys issues

- What paths to analyse?
 - Path from the counterexample
 - Deviations from the path from the counterexample
- How to identify the suspicious program statements
 - Computing Maximal sets of statements satisfying the postcondition → Maximal Satisfiable Subset
 - Computing Minimal sets of statements to withdraw → Minimal
 Correction Set ?

MSS, MCS: Definitions

MSS Maximal Satisfiable Subset
 a generalization of MaxSAT considering maximality instead of maximum cardinality

 $M \subseteq C$ is a MSS $\Leftrightarrow M$ is SAT and $\forall c_i \in C \setminus M : M \cup \{c_i\}$ is UNSAT

MCS Minimal Correction Set

the complement of some MSS: removal yields a satisfiable MSS (it "corrects" the infeasibility)

 $M \subseteq C$ is a MCS $\Leftrightarrow C \setminus M$ is SAT and $\forall c_i \in M : (C \setminus M) \cup \{c_i\}$ is UNSAT

LocFaults – Selecting Diverted Paths

Explore the path of the counter-example and paths with at most k
deviations

Example: one deviation

Decision for one conditional statement is switched and the input data of the counter-example are propagated \rightarrow new path **P'**Iff $CSP_{P'}$ \cup CSP_{POST} is satisfiable, MCS are computed for P'

Compute MCS with at most m suspicious statements

Bounds k and m are mandatory because there are an exponential number

of paths and sets of suspicious statements

LocFaults – Computing MCCs for Diverted Paths

Let be:

- P, a path generated by k decision switches of conditional statements
 cond₁, ..., cond_k and by the propagation of CE
- C, the constraints of P, and C_k , the constraints generated by the assignments occurring before cond_k along P_k

If C ∪ POST holds:

- $\{\neg cond_1, ..., \neg cond_k\}$ is a potential correction,
- The MCS of $C_k \cup \{\neg cond_1, ..., \neg cond_k\}$ are potential corrections

Note: $\{\neg cond_1, ..., \neg cond_k\}$ is a "hard" constraint

LocFaults – Exemple

CFG of AbsMinus

CE:
$$\{i = 0, j = 1\}$$

Faulty path for $\{i = 0, j = 1\}$

→ Suspicious statement: {r= i - j}

LocFaults – Exemple (cont.)

Change decision for 1st IF
Post-condition is violated

→ Path diversion Rejected

Change decision for 2d IF: Post-condition holds

CSP: $k0 = 0 \land k1 = k0 + 2 \land \neg((k1 = 1 \& l \neq j))$

Potential corrections: $\{k0 = 0\}, \{k=k+2\},\$

 $\{k=1\&l \neq j\}$

Computing all MCS(Minimal Correction Set)

Liffiton & Sakallah-2007

```
All MCSes(Φ)
1. \phi' \leftarrow AddYVars(\phi)
                                               % Adds y; selector variables
2. MCSes \leftarrow \emptyset
      k \leftarrow 1
      while (SAT(\phi'))
       \phi'_{k} \leftarrow \phi' \wedge AtMost(\{\neg y_1, \neg y_2, \dots, \neg y_n\}, k)
      while (newMCS \leftarrow IncrementalSAT(\phi'_{k}))
6.
                                                                                 %All MCS of size K
                    MCSes \leftarrow MCSes \cup {newMCS} \phi'_k \leftarrow \phi'_k \land  BlockingClause(newMCS)
7.
                                                                                  % Excludes super sets for
                                                                                     for size= k
9.
                    \phi' \leftarrow \phi' \land BlockingClause(newMCS)
                                                                                  % Excludes super set
                                                                                    for size > k
```

- 10. end while
- 11. k←k+1
- 12. end while
- 13. return MCSes
- Incremental solver (MiniSAT) can be used in loop (I. 6) because constraints are only added but not external loop(I.4) since incrementing k relaxes constraints
- The set of yi variables assigned to false indicates the clauses in MCS

LocFaults – experiments

Benchs	CE	E	Locfaults				BugAssist	
			0 1					
V7	i=2,j=1, k=2	58	58	0,77 s	{ <u>31</u> },{ <u>37</u> }, {27},{32}	0,86 s	{72, 37, 53, 49, 29, 35, 32, 31, 28, 65, 34, 62}	20,48 s
V8	i=3,j=4, k=3	61	61	0,74 s	{ <u>29</u> },{ <u>35</u> }, {30},{25}	0,88 s	{19, 61 , 79, 35, 27, 33, 30, 42, 29, 26, 71, 32, 48, 51, 44}	25,72 s

BugAssist: global approach based on MaxSat, merges the complements of *MaxSat* in a single set of suspicious statements

V7 and **V8**: variations of *Tritype*

Input: three *positive integers*, the triangle sides

Output: type of triangle (isosceles, equilateral, scalene, not a triangle)

V7 returns the *product of the 3 sides*

V8 computes the square of the surface of the triangle by using Heron's formula

LocFaults - Sum up

- Flow-based and incremental approach
 - ightarrow locates *suspicious statements around the path* of the counter-example
- Constraint-based framework
 - well adapted for handling arithmetic operations ... on integers
 - can be extended for handling programs with *floating-point numbers* computations (?)

Conclusion

- BMC (Bounded Model Checking)
 - Goal: Finding counter-examples violating an assertion
 - Contribution of CP: Various solvers and search strategies
 - Limit of CP: efficient pruning is a critical issue

Program analysis

- Goal: Get rid of false alarms
- Contribution of CP: Refining abstraction, suspicious values
- Limit of CP: high computation cost

Fault localization

- Goal: locations of potentially faulty statements
- Contribution of CP: flow-based & incremental approach
- Limit of CP: no global view