ON THE CAPABILITIES OF CP
FOR NUMERICAL PROGRAM ANALYSIS

Michel Rueher

Joined work with

Hélene Collavizza, Claude Michel, Olivier Ponsini, Pascal Van Hentenryck,
Mohammed Said Belaid, Le Vinh Nguyen, Mohammed Bekkouche

University of Nice Sophia Antipolis — CNRS

Master Class “CONSTRAINT PROGRAMMING AND VERIFICATION »
CPAIOR 2015, Barcelona, May 2015

Outline

e BMC (Bounded Model Checking)
o Goal : Finding counter-examples violating an assertion
o State of the art Methods — SAT /SMT Solvers

* Program analysis
o Goal: Get rid of false alarms
o State of the art Methods — abstract interpretation

* Fault localization
o Goal: locations of potentially faulty statements
o State of the art Methods — MaxSat

CP for Numerical Program Analysis

19/05/15 Michel Rueher

Bounded Model Checking

e Context: programs with numeric operations over integer or
floating point numbers

* Goal: Finding counter-examples violating an assertion

CP for Numerical Program Analysis

19/05/15 Michel Rueher

Bounded Model Checking framework

Models — finite automates, labelled transition systems

Properties:
o Safety — something bad should not happen
o Liveness — something good should happen

Bound k — look only for counter examples made of
k states

CP for Numerical Program Analysis

19/05/15 Michel Rueher

Bounded Model Checking framework (cont.)

% set of states: S, initial states: |, transition relation: T
% bad states B reachable from I via T?
bounded_model_checker;,,,,..4(l,T,B,k)

SC=J; SN=I;, n=1

while S. # S, and n<k do

f B n S, #zJ
then return “found error trace to bad states”;

else S.=S\;Sy=Sc UT(SC);n=n+1;
done
return “no bad state reachable”;

CP for Numerical Program Analysis

19/05/15 Michel Rueher

SAT/SMT - Based BMC framework

1 The program is unwound k times

2 The unwound (and simplified) program and the negation of the
property are translated into a big propositional formula ¢

@ is satisfiable iff there exists a counterexample of depth less
than k

SAT solvers solvers have a “Global view”
Numerical expressions — Boolean abstraction
— Spurious solutions
Critical issue: relevant minimum conflict sets to limit backtracks

CP for Numerical Program Analysis

19/05/15 Michel Rueher

CP-Based BMC framework

1 The program is unwound k times

2 The unwound (and simplified) program in SSA/DSA form and the
negation property are translated on the fly into constraint system Cs

Cs is satisfiable for a full path iff there exists a counterexample of
depth less than k

Various solvers and strategies can be used

To explore only a limited part of the search space, efficient pruning is a
critical issue

CP for Numerical Program Analysis

19/05/15 Michel Rueher

CP-Based BMC: CPBPV, a depth first strategy

CPBPV:

* Translate precondition (if exists) and property to check into a set of
constraints

Explore each branch Bi of the program and translate statements of
branch Bi into a set of constraints

o If for each branch Bi, the generated CSP is inconsistent , then
the program is conform with its specification

o If for some branch Bi the generated CSP has a solution, then
this solution is a counterexample — exhibits a non-conformity

Inconsistencies are detected at each node of the control flow graph

CP for Numerical Program Analysis
19/05/15 Michel Rueher 8

CP-Based BMC: DPVS, a Dynamic Backjumping
Strategy

Start from the post-condition and jump to the first locations where
the variables of the post-condition are assigned

Essential observation:
When the program is in an SSA-like form, CFG does not have to be
explored in a top down (or bottom up) way
— compatible blocks can just be collected in a non-
deterministic way

Why does it pay off ?
o Enforces the constraints on the domains of the selected variables

o Detects inconsistencies earlier

CP for Numerical Program Analysis
19/05/15 Michel Rueher

CP-Based BMC: DPVS, example

void foo(int a, int b)
intc,d, e, f;
if(a>=0) {
ifHa<10){f=b-1;}
else-{f=b-a;}
c=a;
if (b>=0) {d=a; e=b}
else {d=a; e=-b;} }

—
co
—

=

C

(0]

T

=

[72]

D
m =¥ On
I I I}
SIS

- else {
®)) —h =1 ae_a-
- c=b; d=1; e=-3;
do_) do:ao .
e,=b, e, = -b, ifHa>bHf=b+e+as}
else {f_e*a b’I }
ot c=ct+d+e;
c,=c,+d +e assert(c>=d+e); // property p,

assert(f>=-b*e); // property p,

To prove property p,, select node (12), then select node (4)
— the condition in node (0) must be true

S5={c, <dyte,y A ¢, =cy+dyteyA ¢ =ayA ay 25} ={a,< 0 A a2 0} ... inconsistent

CP for Numerical Program Analysis
19/05/15 Michel Rueher

10

CP-Based BMC: DPVS, example (cont.)

void foo(int a, int b)
intc,d, e, f;
if(a>=0) {
ifHa<10)}{=b-1;}
else-{f=b-a;}
c=a;
if (b>=0) {d=a; e=b}
else {d=a; e=-b;} }
else {
c=b; d=1; e=-3;
else{f=e*g-b;}}
c=ct+d+e;
assert(c>=d+e); // property p,
assert(f>=-b*e); // property p,

Select node (8) — condition in node (0) must be false:

S = {cl<djtey, A cl=cytdyte, A co=b, A 0,<0 A dy=1 A ey=-0a,}
= {a,<0 A b,<0}

Solution {00 = -1, b0 = -1}

CP for Numerical Program Analysis
19/05/15 Michel Rueher =

CP-Based BMC: Static versus Dynamic Strategies

Two benchmarks:
* Flasher Manager, industrial application
* Binary Search

Bench DPVS CPBPV
FM5 0.5 1.24
FM 100 15.95 > 600
FM 200 22.65 > 600
BS 8 35 0.2

BS 16 > 600 1.14

— Pruning is a critical issue

CP for Numerical Program Analysis

19/05/15 Michel Rueher

12

CP-Based program analysis

e Context:

— Embedded Systems (Anti-lock Braking System controller, ...)
rely more and more on floating-point computations

— Clanguage is widely used for such applications (often C code
generated from a Simulink model)

Floats — a source of execution errors

* Goal: Get rid of false alarms (generated by abstract interpretation
tools)

CP for Numerical Program Analysis

19/05/15 Michel Rueher

13

Problems with floating-point numbers

Rounding: Counter-intuitive properties

o Arithmetic operators are neither associative nor
distributive

o Reasoning with absorption and cancellation

Examples (in simple precision, binary representation):
o Absorption: 107 + 0.5 = 10’
o Cancellation: ((1-10"7)-1)* 107 =-1.192...(# -1)
o (10000001-107)+0.5 # 10000001-(107 +0.5)
o 0.1=(0.000110011001100...)

CP for Numerical Program Analysis
19/05/15 Michel Rueher 4

Problems with floating-point numbers (cont.)

Programs are run on the floats but:
o Specification, properties of programs
— Users are reasoning with real numbers
o Programs are often written with the semantics of real numbers “in
mind”
o Differences between computations over real numbers and
computations over the floats

— Execution problems on programs with floats

CP for Numerical Program Analysis

19/05/15 Michel Rueher

15

Abstract Interpretation

Goal: static detection of execution errors A
— Approximations of computations over floats .- [:

and of computations over the real numbers

Intervals, zonotopes, polyhedra...

Zonotopes: convex polytopes with a central symmetry (sets of affine
forms)

+ Good trade-off between performance and precision

— Not very accurate for nonlinear expressions and on very
common program constructs such as conditionals

CP for Numerical Program Analysis

Michel Rueher 16

19/05/15

Limits of Abstract Interpretation: false alarms

x(t)
A

Possible
trajectories

Courtesy
to Patick Cousot

x(t)

% Forbidden zone :7 False alarm

! Possible

‘ D " trajectories
I

Imprecise trajectory abstraction

CP for Numerical Program Analysis

19/05/15 Michel Rueher

17

Al versus CP

Abstract Interpretation: good scalability for estimating
rounding errors but over-approximation
— false alarms

— totally inappropriate behaviours of a program may be
dreaded but the developer does not know whether these
behaviours will actually occur !

Constraint Programming :

Good precision (strong refutation capabilities, finding counter
examples) but lack of scalability

CP for Numerical Program Analysis

19/05/15 Michel Rueher

18

rAICP: Combining Al and CP (cont.)

Successive exploration and merging steps

o Use of Al to compute a first approximation of the values of
variables at a program node where two branches join

o Building a constraint system for each branch between two join
nodes in the CFG of the program and use of CP local
consistencies to shrink the domains computed by Al

CP for Numerical Program Analysis 19

19/05/15 Michel Rueher

rAICP: example

1 /x Pre—condition: f,g €[—10,10] /
2 float foo(float f, float g) {
3 float x, y, z;

On floats and reals, foo — z=[0,50]

: Fluctuat — z=1[0,100]
ST fraxg Merge points of foo: lines 13 and 21
7 if (x <= 0) {
8) y =& lines 1 —13:
o else { Fluctuat — f,g,y € [-10,10], x € [-10, 0]
11 y = -g;
z } FPCS (path 1, “then” branch) :
i if (y >= 0) { C={x=f+2%g A XSO Ay=g A =10 f A f<10 A
15z = 10%y; -10<g A g<10 A -10<y A y<10 A -10<x A x<0}
o 3 — g,y € [-10,5]
7 else {
iz) 2= lines 14 — 22:
" Fluctuat — z € [0,50]
21 return z;
2 }
19/05/15 CP for Numerical Program Analysis 20

Michel Rueher

rAICP: Filtering techniques

FPCS: solver over floating-point constraints combining interval
propagation with explicit search

* Correct solver over the floats : no solutions are lost
* Based on 2B-consistency and 3B-consistency
Projection functions for floats:

* Direct projections: straightforward adaptation of interval
arithmetic

* |nverse projections: less intuitive, more complex (e.g., might
need a larger format than the system variables)

* Handling of rounding modes, nonlinear expressions and the usual
mathematical functions (trigonometric. . .)

CP for Numerical Program Analysis
19/05/15 Michel Rueher 21

Experiments: eliminating false alarms

CDFL: Program analyser for proving the absence of runtime
errors in program with floating-point computations based
Conflict-Driven Learning

rAICP Fluctuat CDFL
False alarms 0 11 0
Total time 40.55s 18.33 s 208.99 s

Computed on the 55 benchs from CDFL paper (TACAS’12, D’Silva,
Leopold Haller, Daniel Kroening, Michael Tautschnig)

CP for Numerical Program Analysis

19/05/15 Michel Rueher

on

22

Generating Test Cases inside Suspicious Intervals

forbidden interval . R range over R Rg forbidden interval

approximation over I

* Suspicious intervalsforx: [x,,Xx,—€]or[x,+¢€,x]
 Tolerance specified by the user : €

* Question: Can the program hit a forbidden zone over the floating-
point numbers?

CP for Numerical Program Analysis

19/05/15 Michel Rueher

23

Proposed approach : CPBPV_FP

“Forward” propagation
Computing the suspicious interval of x
— approximate the domain of x over the reals by
— approximate domain of x over the floats by [x , x /]

“Backward “ propagation
Computing test-cases inside a suspicious interval of x
— Solving a bounded-model checking problem with domain of
X restrictedto [X, X,—€]or[x +¢ x,]

CP for Numerical Program Analysis

Michel Rueher 24

19/05/15

CPBPV_FP : CP based BMC for floats

Outputs :

* A test case
— P can produce a suspicious value for x

* A proof that no test case exists
— the suspicious interval can be removed

Only the case if the loops in P cannot be unfolded beyond the bound k

* An inconclusive answer
— P may produce a suspicious value

no test case could be generated
but the loops in P could be unfolded beyond the bound k

CP for Numerical Program Analysis

19/05/15 Michel Rueher

25

FPCS Search Strategies

» std: standard prune & bisection-based search

* fpc: domain of selected variable is split in 5 intervals
« 3 degenerated intervals: the smallest float /, the largest float r, and
the mid-point m
 intervals JI, m[and Jm, r[

* fp3s: domain of selected variable is split in 3 degenerated intervals: the
smallest float /, the largest float r, and the mid-point m

CP for Numerical Program Analysis

Michel Rueher 26

19/05/15

Experiments: tools

* CDFL: Program analyser for proving the absence of runtime errors in
program with floating-point computations based on Conflict-Driven
Learning

* CBMLC: state of art bounded mode checkers

* CPBPV_FP: our constraint-based bounded- model checking
framework

CP for Numerical Program Analysis

19/05/15 Michel Rueher

27

Experiments: Program Heron

Uses Heron’s formula to compute the area of a triangle from the lengths of
a, b, and c (a being the longest side):
area= sqrt(s*(s-a)*(s-b)*(s-c) with s=(a+b+c)/2

1 /* Pre—condition : a > banda > ¢ x/
> float heron(float a, float b, float c¢) {
3 float s, squared_area;

4

5 squared_area = 0.0f;

6 if (a <=b+c¢){

7 s =(a+b+c)/ 2.0f;

8 squared_area = sk(s—a)*(s—b)x(s—c);
o}

10 return sqrt(squared_area);

11 }

Optimized Heron : squared_area = ((a+(b+c))*(c—(a—b))
x(c+(a—b))*(a+(b—c)))/16.0f;

CP for Numerical Program Analysis

19/05/15 Michel Rueher

28

Experiments

Name Condition CDFL CBMC | std fpc fpc3s s?

heron aera < 10, 3.87s 0.28s | >180s 0.02sn |y
area > 156.25f +10,> | >180s | 34.51s | 22.32s |7.80s |0.08sn |y

optimized | aera< 10, 7.61s >180s | 0.15s [0.01sn |y
heron area > 156.25f +10,> | >180s | >180s | 8.99s 0.01sn

>

std: standard prune & bisection-based search
fpc: domain of selected variable is split in 5 intervals
* 3degenerated intervals: the smallest float /, the largest float r, and the
mid-point m
* intervals JI, m[and Jm, r[
fp3s: domain of selected variable is split in 3 degenerated intervals: the smallest
float /, the largest float r, and the mid-point m

CP for Numerical Program Analysis

19/05/15 Michel Rueher

29

19/05/15

Fault localization

Problem:
— Execution trace: often /lengthy and difficult to understand
— Difficult to locate the faulty statements

Goal: Provide helpful information for error localization on numeric
constraint systems

Input:

* Some imperative program with numeric statements (over
integers or floating-point numbers)

* An assertion to be checked
* A counter-example that violates the assertion

Output: information on locations of potentially faulty
statements

CP for Numerical Program Analysis

Michel Rueher 30

Fault localization — Keys issues

 What paths to analyse?

— Path from the counterexample
— Deviations from the path from the counterexample

 How to identify the suspicious program statements
— Computing Maximal sets of statements satisfying the
postcondition — Maximal Satisfiable Subset

— Computing Minimal sets of statements to withdraw — Minimal
Correction Set ?

CP for Numerical Program Analysis

19/05/15 Michel Rueher

31

MSS, MCS: Definitions

* IMSS Maximal Satisfiable Subset
a generalization of MaxSAT considering maximality instead of

maximum cardinality
M S CisaMSS < MisSATand V¢, € C\M: M U {c}is UNSAT

* MCS Minimal Correction Set
the complement of some MSS: removal yields a satisfiable MSS (it
“corrects” the infeasibility)
MES CisaMCS < C\MisSATand V¢, € M: (C\M)U({c}is
UNSAT

CP for Numerical Program Analysis 37

19/05/15 Michel Rueher

LocFaults — Selecting Diverted Paths

* Explore the path of the counter-example and paths with at most k
deviations

Example: one deviation

Decision for one conditional statement is switched and the input
data of the counter-example are propagated — new path P’

Iff CSP,, U CSP,,s; is satisfiable, MCS are computed for P’

e Compute MCS with at most m suspicious statements

Bounds k and m are mandatory because there are an exponential
number

of paths and sets of suspicious statements

CP for Numerical Program Analysis
15/05/15 Michel Rueher 3

LocFaults — Computing MCCs for Diverted Paths

Let be:

* P, a path generated by k decision switches of conditional statements
cond,, .., cond, and by the propagation of CE

* C, the constraints of P, and C,, the constraints generated by the
assighments occurring before cond,_ along P,

If C U POST holds:

* {-cond,, .., —cond, }is a potential correction,
* TheMCSofC, U {-cond,, .., -cond, } are potential corrections

Note: {~cond, , .., —=cond, }is a "hard” constraint

CP for Numerical Program Analysis 34

19/05/15 Michel Rueher

LocFaults — Exemple

CFG of AbsMinus

19/05/15

Faulty path for{i=0, j=1}
— Suspicious statement: {r=i-j}

CP for Numerical Program Analysis
Michel Rueher

35

LocFaults — Exemple (cont.)

Change decision for 2d IF: Post-condition holds
CSP: k0 =0 A k1 =k0 +2 A —((k1 =1&lI # j))
Potential corrections: {k0 =0},{k=k+2},

{k=1&I # j}

Change decision for 1st IF
Post-condition is violated
— Path diversion Rejected

CP for Numerical Program Analysis

19/05/15 Michel Rueher

36

Computing all MCS(Minimal Correction Set)
Liffiton & Sakallah-2007

All_MCSes(d)

1. ¢’ &< AddYVars(o) % Adds y. selector variables

2. MCSes < @

3. k<1

4. while (SAT(¢'))

5 d),k < ¢, /\ AtMOSt({_'y]_I Yy .ot _'yn}I k)

6. while (newMCS & IncrementalSAT(d',)) %All MCS of size K
7

8

MCSes €& MCSes U {newMCS}
¢’ € o', A BlockingClause(newMCS) % Excludes super sets for

for size=k

9. ¢’ < ¢’ A BlockingClause(newMCS) % Excludes super set
for size > k

10. end while

11. k<&k+1

12. end while

13. return MCSes

* Incremental solver (MiniSAT) can be used in loop (I. 6) because constraints are
only added but not external loop(l.4) since incrementing k relaxes constraints

* The set of yi variables assigned to false indicates the clauses in MCS

CP for Numerical Program Analysis

19/05/15 Michel Rueher

37

LocFaults — experiments

Benchs CE E Locfaults BugAssist
0 1
V7 i=2,j=1, 58 |58 |0,77s | {31},{37},|0,86s |{72,37,53,49, |20,48s
k=2 {27},{32} 29, 35, 32, 31,
28, 65, 34, 62}
V8 i=3,j=4, 61 |61 |0,74s |{29},{35}, |10,88s |{19,61,79,35, |25,72s
k=3 {30},{25} 27, 33, 30, 42,
29, 26,71, 32,
48, 51, 44}

BugAssist: global approach based on MaxSat, merges the complements of MaxSat in a
single set of suspicious statements
V7 and V8 : variations of Tritype
Input: three positive integers, the triangle sides
Output: type of triangle (isosceles, equilateral, scalene, not a triangle)
V7 returns the product of the 3 sides
V8 computes the square of the surface of the triangle by using Heron’s formula

19/05/15

CP for Numerical Program Analysis

Michel Rueher

LocFaults — Sum up

* Flow-based and incremental approach
— locates suspicious statements around the path of the counter-

example

* Constraint-based framework
— well adapted for handling arithmetic operations ... on
integers

— can be extended for handling programs with floating-
point numbers computations (?)

CP for Numerical Program Analysis

19/05/15 Michel Rueher

39

19/05/15

Conclusion

BMC (Bounded Model Checking)
o Goal : Finding counter-examples violating an assertion
o Contribution of CP: Various solvers and search strategies
o Limit of CP: efficient pruning is a critical issue

Program analysis
o Goal: Get rid of false alarms
o Contribution of CP : Refining abstraction, suspicious values
o Limit of CP: high computation cost

Fault localization
o Goal: locations of potentially faulty statements
o Contribution of CP : flow-based & incremental approach
o Limit of CP: no global view

CP for Numerical Program Analysis
Michel Rueher

40

